Global signal regression strengthens association between resting-state functional connectivity and behavior

Global signal regression (GSR) is one of the most debated preprocessing strategies for resting-state functional MRI. GSR effectively removes global artifacts driven by motion and respiration, but also discards globally distributed neural information and introduces negative correlations between certa...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 196; pp. 126 - 141
Main Authors Li, Jingwei, Kong, Ru, Liégeois, Raphaël, Orban, Csaba, Tan, Yanrui, Sun, Nanbo, Holmes, Avram J., Sabuncu, Mert R., Ge, Tian, Yeo, B.T. Thomas
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.08.2019
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Global signal regression (GSR) is one of the most debated preprocessing strategies for resting-state functional MRI. GSR effectively removes global artifacts driven by motion and respiration, but also discards globally distributed neural information and introduces negative correlations between certain brain regions. The vast majority of previous studies have focused on the effectiveness of GSR in removing imaging artifacts, as well as its potential biases. Given the growing interest in functional connectivity fingerprinting, here we considered the utilitarian question of whether GSR strengthens or weakens associations between resting-state functional connectivity (RSFC) and multiple behavioral measures across cognition, personality and emotion. By applying the variance component model to the Brain Genomics Superstruct Project (GSP), we found that behavioral variance explained by whole-brain RSFC increased by an average of 47% across 23 behavioral measures after GSR. In the Human Connectome Project (HCP), we found that behavioral variance explained by whole-brain RSFC increased by an average of 40% across 58 behavioral measures, when GSR was applied after ICA-FIX de-noising. To ensure generalizability, we repeated our analyses using kernel regression. GSR improved behavioral prediction accuracies by an average of 64% and 12% in the GSP and HCP datasets respectively. Importantly, the results were consistent across methods. A behavioral measure with greater RSFC-explained variance (using the variance component model) also exhibited greater prediction accuracy (using kernel regression). A behavioral measure with greater improvement in behavioral variance explained after GSR (using the variance component model) also enjoyed greater improvement in prediction accuracy after GSR (using kernel regression). Furthermore, GSR appeared to benefit task performance measures more than self-reported measures. Since GSR was more effective at removing motion-related and respiratory-related artifacts, GSR-related increases in variance explained and prediction accuracies were unlikely the result of motion-related or respiratory-related artifacts. However, it is worth emphasizing that the current study focused on whole-brain RSFC, so it remains unclear whether GSR improves RSFC-behavioral associations for specific connections or networks. Overall, our results suggest that at least in the case for young healthy adults, GSR strengthens the associations between RSFC and most (although not all) behavioral measures. Code for the variance component model and ridge regression can be found here: https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/preprocessing/Li2019_GSR. •Global signal regression improves RSFC-behavior associations.•Global signal regression improves RSFC-based behavioral prediction accuracies.•Improvements replicated across two large-scale datasets and methods.•Task-performance measures enjoyed greater improvements than self-reported ones.•GSR beneficial even after ICA-FIX.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
L and RK contributed equally to this work
ISSN:1053-8119
1095-9572
1095-9572
DOI:10.1016/j.neuroimage.2019.04.016