Independent Elaboration of Steroid Hormone Signaling Pathways in Metazoans

Steroid hormones regulate many physiological processes in vertebrates, nematodes, and arthropods through binding to nuclear receptors (NR), a metazoan-specif ic family of ligand-activated transcription factors. The main steps controlling the diversification of this family are now well-understood. In...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 106; no. 29; pp. 11913 - 11918
Main Authors Markov, Gabriel V., Tavares, Raquel, Dauphin-Villemant, Chantal, Demeneix, Barbara A., Baker, Michael E., Laudet, Vincent, Gustafsson, Jan Åke
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 21.07.2009
National Acad Sciences
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.0812138106

Cover

Loading…
Abstract Steroid hormones regulate many physiological processes in vertebrates, nematodes, and arthropods through binding to nuclear receptors (NR), a metazoan-specif ic family of ligand-activated transcription factors. The main steps controlling the diversification of this family are now well-understood. In contrast the origin and evolution of steroid ligands remain mysterious, although this is crucial for understanding the emergence of modern endocrine systems. Using a comparative genomic approach, we analyzed complete metazoan genomes to provide a comprehensive view of the evolution of major enzymatic players implicated in steroidogenesis at the whole metazoan scale. Our analysis reveals that steroidogenesis has been independently elaborated in the 3 main bilaterian lineages, and that steroidogenic cytochrome P450 enzymes descended from those that detoxify xenobiotics.
AbstractList Steroid hormones regulate many physiological processes in vertebrates, nematodes, and arthropods through binding to nuclear receptors (NR), a metazoan-specific family of ligand-activated transcription factors. The main steps controlling the diversification of this family are now well-understood. In contrast, the origin and evolution of steroid ligands remain mysterious, although this is crucial for understanding the emergence of modern endocrine systems. Using a comparative genomic approach, we analyzed complete metazoan genomes to provide a comprehensive view of the evolution of major enzymatic players implicated in steroidogenesis at the whole metazoan scale. Our analysis reveals that steroidogenesis has been independently elaborated in the 3 main bilaterian lineages, and that steroidogenic cytochrome P450 enzymes descended from those that detoxify xenobiotics.
Steroid hormones regulate many physiological processes in vertebrates, nematodes, and arthropods through binding to nuclear receptors (NR), a metazoan-specific family of ligand-activated transcription factors. The main steps controlling the diversification of this family are now well-understood. In contrast, the origin and evolution of steroid ligands remain mysterious, although this is crucial for understanding the emergence of modern endocrine systems. Using a comparative genomic approach, we analyzed complete metazoan genomes to provide a comprehensive view of the evolution of major enzymatic players implicated in steroidogenesis at the whole metazoan scale. Our analysis reveals that steroidogenesis has been independently elaborated in the 3 main bilaterian lineages, and that steroidogenic cytochrome P450 enzymes descended from those that detoxify xenobiotics.Steroid hormones regulate many physiological processes in vertebrates, nematodes, and arthropods through binding to nuclear receptors (NR), a metazoan-specific family of ligand-activated transcription factors. The main steps controlling the diversification of this family are now well-understood. In contrast, the origin and evolution of steroid ligands remain mysterious, although this is crucial for understanding the emergence of modern endocrine systems. Using a comparative genomic approach, we analyzed complete metazoan genomes to provide a comprehensive view of the evolution of major enzymatic players implicated in steroidogenesis at the whole metazoan scale. Our analysis reveals that steroidogenesis has been independently elaborated in the 3 main bilaterian lineages, and that steroidogenic cytochrome P450 enzymes descended from those that detoxify xenobiotics.
Steroid hormones regulate many physiological processes in vertebrates, nematodes, and arthropods through binding to nuclear receptors (NR), a metazoan-specif ic family of ligand-activated transcription factors. The main steps controlling the diversification of this family are now well-understood. In contrast the origin and evolution of steroid ligands remain mysterious, although this is crucial for understanding the emergence of modern endocrine systems. Using a comparative genomic approach, we analyzed complete metazoan genomes to provide a comprehensive view of the evolution of major enzymatic players implicated in steroidogenesis at the whole metazoan scale. Our analysis reveals that steroidogenesis has been independently elaborated in the 3 main bilaterian lineages, and that steroidogenic cytochrome P450 enzymes descended from those that detoxify xenobiotics.
Steroid hormones regulate many physiological processes in vertebrates, nematodes, and arthropods through binding to nuclear receptors (NR), a metazoan-specific family of ligand-activated transcription factors. The main steps controlling the diversification of this family are now well-understood. In contrast, the origin and evolution of steroid ligands remain mysterious, although this is crucial for understanding the emergence of modern endocrine systems. Using a comparative genomic approach, we analyzed complete metazoan genomes to provide a comprehensive view of the evolution of major enzymatic players implicated in steroidogenesis at the whole metazoan scale. Our analysis reveals that steroidogenesis has been independently elaborated in the 3 main bilaterian lineages, and that steroidogenic cytochrome P450 enzymes descended from those that detoxify xenobiotics. [PUBLICATION ABSTRACT]
Author Markov, Gabriel V.
Laudet, Vincent
Tavares, Raquel
Baker, Michael E.
Demeneix, Barbara A.
Dauphin-Villemant, Chantal
Gustafsson, Jan Åke
Author_xml – sequence: 1
  givenname: Gabriel V.
  surname: Markov
  fullname: Markov, Gabriel V.
– sequence: 2
  givenname: Raquel
  surname: Tavares
  fullname: Tavares, Raquel
– sequence: 3
  givenname: Chantal
  surname: Dauphin-Villemant
  fullname: Dauphin-Villemant, Chantal
– sequence: 4
  givenname: Barbara A.
  surname: Demeneix
  fullname: Demeneix, Barbara A.
– sequence: 5
  givenname: Michael E.
  surname: Baker
  fullname: Baker, Michael E.
– sequence: 6
  givenname: Vincent
  surname: Laudet
  fullname: Laudet, Vincent
– sequence: 7
  givenname: Jan Åke
  surname: Gustafsson
  fullname: Gustafsson, Jan Åke
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19571007$$D View this record in MEDLINE/PubMed
https://hal.inrae.fr/hal-02666864$$DView record in HAL
BookMark eNqFkk1vEzEQhi1URD_gzAm04oDEIe34Y23vBamqCikKAqlwtrxeb-JoYwfbKZRfj0NCApEqLrbked6Zd8Zzio588Bah5xjOMQh6sfQ6nYPEBFOJgT9CJxgaPOKsgSN0AkDESDLCjtFpSnMAaGoJT9AxbmqBAcQJ-nDjO7u05fC5uh50G6LOLvgq9NVttjG4rhqHuChlq1s39Xpwflp91nn2Xd-nyvnqo836Z9A-PUWPez0k-2x7n6Gv766_XI1Hk0_vb64uJyPDKeQRtdhIzPuaCy1Ma2VtGOtMMdb2baeFbVhv2q6YbXVvO0pFZ6SAXkqBW8oJPUNvN3mXq3ZhO1OcRz2oZXQLHe9V0E79G_FupqbhThGB6xpwSfBmk2B2IBtfTtT6DQjnXHJ2t2Zfb4vF8G1lU1YLl4wdBu1tWCXFRY2B4P-DjFMiKRMFfHUAzsMqlsEmRYo5IihpCvTy7x53Lv98XAHqDWBiSCnaXhmXf_9cadkNCoNaL4haL4jaL0jRXRzodqkfVFRbK-vAnuaKNArjBtP9QB9EVL8ahmx_5MK-2LDzlEPcwQyYZFAL-guSrt9t
CitedBy_id crossref_primary_10_1016_j_jsbmb_2018_06_014
crossref_primary_10_1186_s12864_022_08407_w
crossref_primary_10_1016_j_ympev_2015_09_012
crossref_primary_10_1016_j_ydbio_2010_09_023
crossref_primary_10_1016_j_jsbmb_2023_106302
crossref_primary_10_1016_j_scitotenv_2023_163537
crossref_primary_10_1016_j_euprot_2014_01_003
crossref_primary_10_1042_BCJ20160579
crossref_primary_10_1530_JME_13_0219
crossref_primary_10_1016_j_ijbiomac_2019_10_045
crossref_primary_10_1111_tra_12177
crossref_primary_10_1152_physiolgenomics_00002_2011
crossref_primary_10_1186_s40851_015_0031_2
crossref_primary_10_1016_j_jsbmb_2012_04_007
crossref_primary_10_1016_j_coesh_2019_06_005
crossref_primary_10_1007_s10158_013_0149_x
crossref_primary_10_3389_fendo_2021_587608
crossref_primary_10_1093_molbev_msq129
crossref_primary_10_3390_cells13151284
crossref_primary_10_3389_fendo_2022_921504
crossref_primary_10_1126_scisignal_3143pe36
crossref_primary_10_3389_fcell_2021_646754
crossref_primary_10_1016_j_jsbmb_2013_12_018
crossref_primary_10_1016_j_autrev_2016_07_002
crossref_primary_10_1080_17458080_2012_710500
crossref_primary_10_1016_j_jsbmb_2012_10_005
crossref_primary_10_1016_j_steroids_2016_06_005
crossref_primary_10_1038_s41598_021_81917_x
crossref_primary_10_1210_er_2012_1055
crossref_primary_10_1016_j_cub_2021_12_038
crossref_primary_10_1021_acs_est_8b01604
crossref_primary_10_1093_bfgp_els008
crossref_primary_10_1016_j_ygcen_2015_07_011
crossref_primary_10_3389_fendo_2016_00106
crossref_primary_10_1016_j_steroids_2010_10_008
crossref_primary_10_1186_s12862_017_0909_z
crossref_primary_10_1016_j_bcp_2011_03_008
crossref_primary_10_1016_j_aquatox_2010_09_022
crossref_primary_10_1016_j_cbd_2024_101323
crossref_primary_10_1016_j_jsbmb_2014_10_011
crossref_primary_10_1002_jez_634
crossref_primary_10_3389_fendo_2022_981564
crossref_primary_10_1002_etc_4687
crossref_primary_10_1016_j_cbpc_2016_11_003
crossref_primary_10_1038_s41598_021_88700_y
crossref_primary_10_1093_jb_mvx011
crossref_primary_10_1248_bpb_35_812
crossref_primary_10_1016_j_febslet_2010_03_036
crossref_primary_10_1016_j_jsbmb_2020_105756
crossref_primary_10_1016_j_ygcen_2017_12_006
crossref_primary_10_1016_j_cbpa_2023_111533
crossref_primary_10_1111_mec_15173
crossref_primary_10_3389_fcell_2021_653792
crossref_primary_10_1016_j_mce_2019_110526
crossref_primary_10_1016_j_ecolind_2011_05_001
crossref_primary_10_1038_srep11418
crossref_primary_10_7717_peerj_6953
crossref_primary_10_1016_j_bcp_2020_113976
crossref_primary_10_1007_s00239_014_9651_y
crossref_primary_10_1016_j_chemosphere_2013_06_054
crossref_primary_10_1016_j_jsbmb_2014_10_020
crossref_primary_10_1016_j_steroids_2012_07_014
crossref_primary_10_1126_sciadv_1601778
crossref_primary_10_1016_j_jtbi_2021_110601
crossref_primary_10_1073_pnas_0914026107
crossref_primary_10_3389_fendo_2024_1458422
crossref_primary_10_1016_j_jsbmb_2011_03_022
crossref_primary_10_1016_j_jsbmb_2014_03_002
crossref_primary_10_1080_09168451_2014_942250
crossref_primary_10_1530_JOE_16_0661
crossref_primary_10_1016_j_ygcen_2016_07_014
crossref_primary_10_1371_journal_pone_0076701
crossref_primary_10_1007_s10126_018_9800_1
crossref_primary_10_1371_journal_pone_0129571
crossref_primary_10_1016_j_sxmr_2017_03_003
crossref_primary_10_1126_scisignal_aao1520
crossref_primary_10_1371_journal_pone_0159852
crossref_primary_10_3109_10408444_2013_855163
crossref_primary_10_1016_j_mce_2020_110712
crossref_primary_10_1517_17425255_2013_828692
crossref_primary_10_1016_j_steroids_2012_11_006
crossref_primary_10_3389_fendo_2022_903575
crossref_primary_10_1210_en_2014_1181
crossref_primary_10_1016_j_bbrc_2010_07_057
crossref_primary_10_1016_j_aquatox_2016_02_023
crossref_primary_10_4002_040_064_0103
crossref_primary_10_1016_j_mce_2024_112189
crossref_primary_10_1016_j_jsbmb_2018_07_010
crossref_primary_10_1074_jbc_M111_244384
crossref_primary_10_1016_j_marpolbul_2012_05_020
crossref_primary_10_1016_j_mce_2020_110949
crossref_primary_10_1371_journal_pone_0140569
crossref_primary_10_1098_rsos_180888
crossref_primary_10_1093_molbev_msv218
crossref_primary_10_1016_j_steroids_2013_11_019
crossref_primary_10_1016_j_steroids_2011_07_015
crossref_primary_10_1080_10937404_2011_578561
crossref_primary_10_1093_gbe_evr084
crossref_primary_10_1016_j_jsbmb_2018_07_001
crossref_primary_10_1016_j_aquatox_2016_07_006
crossref_primary_10_1080_21541264_2016_1210370
crossref_primary_10_1016_j_jsbmb_2015_07_025
crossref_primary_10_1016_j_ibmb_2020_103490
crossref_primary_10_1021_es401115q
crossref_primary_10_1016_j_steroids_2012_08_009
crossref_primary_10_1155_2011_176802
crossref_primary_10_1673_031_013_5601
crossref_primary_10_1016_j_ygcen_2018_04_005
crossref_primary_10_1016_j_jsbmb_2016_12_020
crossref_primary_10_1016_j_ygcen_2014_05_008
crossref_primary_10_1371_journal_pone_0121259
crossref_primary_10_1021_es300550h
crossref_primary_10_1111_mec_14162
crossref_primary_10_1016_j_jsbmb_2018_09_004
crossref_primary_10_2478_intox_2018_0005
crossref_primary_10_1016_j_steroids_2015_08_008
crossref_primary_10_1038_s41581_023_00781_2
crossref_primary_10_1016_j_jsbmb_2010_09_001
crossref_primary_10_5582_bst_2017_01009
crossref_primary_10_1016_j_jsbmb_2013_07_009
crossref_primary_10_1098_rstb_2012_0474
crossref_primary_10_1371_journal_ppat_1011566
crossref_primary_10_1186_s12862_019_1463_7
crossref_primary_10_1016_j_mce_2024_112155
crossref_primary_10_1016_j_ygcen_2024_114519
crossref_primary_10_1007_s10126_016_9706_8
crossref_primary_10_1016_j_bbagrm_2014_06_016
crossref_primary_10_1016_j_jmb_2010_04_002
crossref_primary_10_1016_j_yfrne_2010_01_003
Cites_doi 10.1093/molbev/msh200
10.1021/bi00018a001
10.1016/S0140-6736(02)11203-7
10.1146/annurev.ento.47.091201.145302
10.1002/bies.10252
10.1093/icb/45.1.172
10.1007/s10646-006-0113-1
10.1210/er.2003-0030
10.1016/S1095-6433(02)00285-4
10.1073/pnas.94.13.6803
10.1016/j.cell.2006.01.037
10.1002/j.1460-2075.1992.tb05139.x
10.1126/science.1086185
10.1016/j.febslet.2004.08.023
10.1371/journal.pgen.0030067
10.1073/pnas.091553298
10.1016/0016-6480(87)90028-1
10.1073/pnas.0406352102
10.1093/molbev/msn233
10.1210/me.2006-0323
10.1016/j.aquatox.2007.08.004
10.1016/j.ygeno.2006.06.004
10.1038/sj.emboj.7601810
10.1126/science.1123348
10.1016/S0742-8413(98)10027-0
10.1080/10635150390235520
10.1073/pnas.0503244102
10.1016/S0303-7207(00)00414-7
10.1677/jme.0.0190207
10.1186/1471-2148-8-60
10.1126/science.294.5548.1866
10.1101/gad.12.20.3195
10.1074/jbc.R100033200
10.1002/1521-1878(200008)22:8<717::AID-BIES5>3.0.CO;2-I
10.1073/pnas.0700847104
10.1016/j.cbpc.2004.07.002
10.1016/j.mce.2008.06.011
10.1677/JOE-07-0248
10.1271/bbb.70.583
10.1124/jpet.107.121723
10.1124/pr.58.4.6
10.1186/1471-2105-5-113
10.1371/journal.pgen.1000191
10.1095/biolreprod.102.012450
10.1124/pr.58.4.10
10.1042/BST0341256
10.1016/j.cbpc.2005.11.011
10.1038/nrd1551
10.1210/er.2002-0050
ContentType Journal Article
Copyright Copyright National Academy of Sciences Jul 21, 2009
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright National Academy of Sciences Jul 21, 2009
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
1XC
5PM
DOI 10.1073/pnas.0812138106
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
CrossRef


Virology and AIDS Abstracts

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Computer Science
EISSN 1091-6490
EndPage 11918
ExternalDocumentID PMC2715501
oai_HAL_hal_02666864v1
1799781651
19571007
10_1073_pnas_0812138106
106_29_11913
40484057
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
AS
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XFK
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
.GJ
1XC
3O-
692
6TJ
79B
ACKIV
AFHIN
AFQQW
HGD
NEJ
NHB
UMC
VOH
WHG
ZCG
5PM
ID FETCH-LOGICAL-c630t-3e1c816f567a7cbe85c44dc580bfbda7e94fcbd000bafed337dc870f8871b3623
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:04:42 EDT 2025
Fri May 09 12:26:26 EDT 2025
Thu Jul 10 19:12:19 EDT 2025
Fri Jul 11 04:16:06 EDT 2025
Mon Jun 30 08:36:35 EDT 2025
Wed Feb 19 01:48:37 EST 2025
Tue Jul 01 00:46:40 EDT 2025
Thu Apr 24 22:51:45 EDT 2025
Wed Nov 11 00:29:54 EST 2020
Thu May 30 08:50:55 EDT 2019
Thu May 29 08:42:58 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 29
Keywords STEROIDOGENESIS
EVOLUTION
GENOMIQUE
NUCLEAR-RECEPTOR LIGAND
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c630t-3e1c816f567a7cbe85c44dc580bfbda7e94fcbd000bafed337dc870f8871b3623
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMCID: PMC2715501
Author contributions: G.V.M. and V.L. designed research; G.V.M. performed research; G.V.M., R.T., and V.L. analyzed data; and G.V.M., C.D.-V., B.A.D., M.E.B., and V.L. wrote the paper.
Edited by Jan-Åke Gustafsson, Karolinska Institutet, Stockholm, Sweden, and approved May 26, 2009
ORCID 0000-0002-8566-7482
0009-0007-9854-6616
OpenAccessLink http://doi.org/10.1073/pnas.0812138106
PMID 19571007
PQID 201327329
PQPubID 42026
PageCount 6
ParticipantIDs hal_primary_oai_HAL_hal_02666864v1
pubmed_primary_19571007
crossref_citationtrail_10_1073_pnas_0812138106
pnas_primary_106_29_11913_fulltext
proquest_journals_201327329
jstor_primary_40484057
pnas_primary_106_29_11913
proquest_miscellaneous_67510211
proquest_miscellaneous_46328347
crossref_primary_10_1073_pnas_0812138106
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2715501
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-07-21
PublicationDateYYYYMMDD 2009-07-21
PublicationDate_xml – month: 07
  year: 2009
  text: 2009-07-21
  day: 21
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2009
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_14_2
e_1_3_3_35_2
Jones DT (e_1_3_3_52_2) 1992; 8
e_1_3_3_33_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_42_2
e_1_3_3_51_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
Nelson DR (e_1_3_3_21_2) 2006; 320
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_32_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
Galtier N (e_1_3_3_50_2) 1996; 12
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
1312460 - EMBO J. 1992 Mar;11(3):1003-13
16529801 - Cell. 2006 Mar 24;124(6):1209-23
15520817 - Nat Rev Drug Discov. 2004 Nov;3(11):950-64
17327420 - Mol Endocrinol. 2007 May;21(5):1028-38
21676759 - Integr Comp Biol. 2005 Jan;45(1):172-8
15318951 - BMC Bioinformatics. 2004 Aug 19;5:113
16719369 - Methods Mol Biol. 2006;320:1-10
14500980 - Science. 2003 Sep 19;301(5640):1714-7
12387968 - Lancet. 2002 Oct 12;360(9340):1155-62
11459851 - J Biol Chem. 2001 Oct 12;276(41):37739-42
15583024 - Endocr Rev. 2004 Dec;25(6):947-70
17500592 - PLoS Genet. 2007 May 11;3(5):e67
15937106 - Proc Natl Acad Sci U S A. 2005 Jun 14;102(24):8495-500
15229292 - Mol Biol Evol. 2004 Oct;21(10):1923-37
15358559 - FEBS Lett. 2004 Sep 10;574(1-3):167-70
11729302 - Science. 2001 Nov 30;294(5548):1866-70
12655646 - Bioessays. 2003 Apr;25(4):396-400
15632317 - Endocr Rev. 2005 Jun;26(4):525-82
15625113 - Proc Natl Acad Sci U S A. 2005 Jan 11;102(2):297-302
17238002 - Ecotoxicology. 2007 Feb;16(1):109-30
17360327 - Proc Natl Acad Sci U S A. 2007 Mar 20;104(12):5014-9
17132852 - Pharmacol Rev. 2006 Dec;58(4):742-59
14530136 - Syst Biol. 2003 Oct;52(5):696-704
17951538 - J Endocrinol. 2007 Nov;195(2):271-9
16860536 - Genomics. 2006 Dec;88(6):820-30
9784494 - Genes Dev. 1998 Oct 15;12(20):3195-205
11729094 - Annu Rev Entomol. 2002;47:883-916
16556972 - Biosci Biotechnol Biochem. 2006 Mar;70(3):583-90
1633570 - Comput Appl Biosci. 1992 Jun;8(3):275-82
16601189 - Science. 2006 Apr 7;312(5770):97-101
16406821 - Comp Biochem Physiol C Toxicol Pharmacol. 2006 Jan-Feb;142(1-2):142-50
11165032 - Mol Cell Endocrinol. 2001 Jan 22;171(1-2):211-5
7742302 - Biochemistry. 1995 May 9;34(18):6003-13
17673910 - EMBO J. 2007 Aug 22;26(16):3770-82
18936441 - Mol Biol Evol. 2009 Jan;26(1):123-9
18787702 - PLoS Genet. 2008;4(9):e1000191
12606339 - Biol Reprod. 2003 Jun;68(6):2255-60
11331759 - Proc Natl Acad Sci U S A. 2001 May 8;98(10):5671-6
12547266 - Comp Biochem Physiol A Mol Integr Physiol. 2003 Feb;134(2):365-76
17073797 - Biochem Soc Trans. 2006 Dec;34(Pt 6):1256-60
9460643 - J Mol Endocrinol. 1997 Dec;19(3):207-26
18634845 - Mol Cell Endocrinol. 2008 Oct 10;293(1-2):5-16
9972448 - Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1998 Nov;121(1-3):15-22
17875331 - Aquat Toxicol. 2007 Nov 30;85(2):113-23
9021275 - Comput Appl Biosci. 1996 Dec;12(6):543-8
18298845 - BMC Evol Biol. 2008;8:60
15364295 - Comp Biochem Physiol B Biochem Mol Biol. 2004 Sep;139(1):123-8
17132856 - Pharmacol Rev. 2006 Dec;58(4):798-836
10918302 - Bioessays. 2000 Aug;22(8):717-27
9192646 - Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6803-8
17502430 - J Pharmacol Exp Ther. 2007 Aug;322(2):843-51
2962897 - Gen Comp Endocrinol. 1987 Nov;68(2):189-96
References_xml – ident: e_1_3_3_6_2
  doi: 10.1093/molbev/msh200
– ident: e_1_3_3_22_2
  doi: 10.1021/bi00018a001
– ident: e_1_3_3_41_2
  doi: 10.1016/S0140-6736(02)11203-7
– volume: 320
  start-page: 1
  year: 2006
  ident: e_1_3_3_21_2
  article-title: Cytochrome P450 nomenclature, 2004
  publication-title: Methods Mol Biol
– ident: e_1_3_3_40_2
  doi: 10.1146/annurev.ento.47.091201.145302
– ident: e_1_3_3_8_2
  doi: 10.1002/bies.10252
– ident: e_1_3_3_39_2
  doi: 10.1093/icb/45.1.172
– ident: e_1_3_3_18_2
  doi: 10.1007/s10646-006-0113-1
– ident: e_1_3_3_17_2
  doi: 10.1210/er.2003-0030
– ident: e_1_3_3_38_2
  doi: 10.1016/S1095-6433(02)00285-4
– ident: e_1_3_3_5_2
  doi: 10.1073/pnas.94.13.6803
– ident: e_1_3_3_14_2
  doi: 10.1016/j.cell.2006.01.037
– ident: e_1_3_3_3_2
  doi: 10.1002/j.1460-2075.1992.tb05139.x
– ident: e_1_3_3_11_2
  doi: 10.1126/science.1086185
– ident: e_1_3_3_27_2
  doi: 10.1016/j.febslet.2004.08.023
– ident: e_1_3_3_24_2
  doi: 10.1371/journal.pgen.0030067
– ident: e_1_3_3_10_2
  doi: 10.1073/pnas.091553298
– ident: e_1_3_3_37_2
  doi: 10.1016/0016-6480(87)90028-1
– ident: e_1_3_3_35_2
  doi: 10.1073/pnas.0406352102
– ident: e_1_3_3_32_2
  doi: 10.1093/molbev/msn233
– volume: 12
  start-page: 543
  year: 1996
  ident: e_1_3_3_50_2
  article-title: SEAVIEW and PHYLO WIN: Two graphic tools for sequence alignment and molecular phylogeny
  publication-title: Comput Appl Biosci
– ident: e_1_3_3_48_2
  doi: 10.1210/me.2006-0323
– ident: e_1_3_3_46_2
  doi: 10.1016/j.aquatox.2007.08.004
– ident: e_1_3_3_28_2
  doi: 10.1016/j.ygeno.2006.06.004
– ident: e_1_3_3_9_2
  doi: 10.1038/sj.emboj.7601810
– volume: 8
  start-page: 275
  year: 1992
  ident: e_1_3_3_52_2
  article-title: The rapid generation of mutation data matrices from protein sequences
  publication-title: Comput Appl Biosci
– ident: e_1_3_3_12_2
  doi: 10.1126/science.1123348
– ident: e_1_3_3_20_2
  doi: 10.1016/S0742-8413(98)10027-0
– ident: e_1_3_3_51_2
  doi: 10.1080/10635150390235520
– ident: e_1_3_3_29_2
  doi: 10.1073/pnas.0503244102
– ident: e_1_3_3_26_2
  doi: 10.1016/S0303-7207(00)00414-7
– ident: e_1_3_3_4_2
  doi: 10.1677/jme.0.0190207
– ident: e_1_3_3_25_2
  doi: 10.1186/1471-2148-8-60
– ident: e_1_3_3_44_2
  doi: 10.1126/science.294.5548.1866
– ident: e_1_3_3_45_2
  doi: 10.1101/gad.12.20.3195
– ident: e_1_3_3_43_2
  doi: 10.1074/jbc.R100033200
– ident: e_1_3_3_7_2
  doi: 10.1002/1521-1878(200008)22:8<717::AID-BIES5>3.0.CO;2-I
– ident: e_1_3_3_15_2
  doi: 10.1073/pnas.0700847104
– ident: e_1_3_3_33_2
  doi: 10.1016/j.cbpc.2004.07.002
– ident: e_1_3_3_19_2
  doi: 10.1016/j.mce.2008.06.011
– ident: e_1_3_3_31_2
  doi: 10.1677/JOE-07-0248
– ident: e_1_3_3_30_2
  doi: 10.1271/bbb.70.583
– ident: e_1_3_3_34_2
  doi: 10.1124/jpet.107.121723
– ident: e_1_3_3_42_2
  doi: 10.1124/pr.58.4.6
– ident: e_1_3_3_49_2
  doi: 10.1186/1471-2105-5-113
– ident: e_1_3_3_13_2
  doi: 10.1371/journal.pgen.1000191
– ident: e_1_3_3_36_2
  doi: 10.1095/biolreprod.102.012450
– ident: e_1_3_3_2_2
  doi: 10.1124/pr.58.4.10
– ident: e_1_3_3_16_2
  doi: 10.1042/BST0341256
– ident: e_1_3_3_47_2
  doi: 10.1016/j.cbpc.2005.11.011
– ident: e_1_3_3_1_2
  doi: 10.1038/nrd1551
– ident: e_1_3_3_23_2
  doi: 10.1210/er.2002-0050
– reference: 18936441 - Mol Biol Evol. 2009 Jan;26(1):123-9
– reference: 15358559 - FEBS Lett. 2004 Sep 10;574(1-3):167-70
– reference: 7742302 - Biochemistry. 1995 May 9;34(18):6003-13
– reference: 15937106 - Proc Natl Acad Sci U S A. 2005 Jun 14;102(24):8495-500
– reference: 9784494 - Genes Dev. 1998 Oct 15;12(20):3195-205
– reference: 1312460 - EMBO J. 1992 Mar;11(3):1003-13
– reference: 17673910 - EMBO J. 2007 Aug 22;26(16):3770-82
– reference: 15229292 - Mol Biol Evol. 2004 Oct;21(10):1923-37
– reference: 21676759 - Integr Comp Biol. 2005 Jan;45(1):172-8
– reference: 18787702 - PLoS Genet. 2008;4(9):e1000191
– reference: 16719369 - Methods Mol Biol. 2006;320:1-10
– reference: 12547266 - Comp Biochem Physiol A Mol Integr Physiol. 2003 Feb;134(2):365-76
– reference: 15625113 - Proc Natl Acad Sci U S A. 2005 Jan 11;102(2):297-302
– reference: 14500980 - Science. 2003 Sep 19;301(5640):1714-7
– reference: 18634845 - Mol Cell Endocrinol. 2008 Oct 10;293(1-2):5-16
– reference: 11459851 - J Biol Chem. 2001 Oct 12;276(41):37739-42
– reference: 12606339 - Biol Reprod. 2003 Jun;68(6):2255-60
– reference: 9192646 - Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6803-8
– reference: 16556972 - Biosci Biotechnol Biochem. 2006 Mar;70(3):583-90
– reference: 17238002 - Ecotoxicology. 2007 Feb;16(1):109-30
– reference: 10918302 - Bioessays. 2000 Aug;22(8):717-27
– reference: 17951538 - J Endocrinol. 2007 Nov;195(2):271-9
– reference: 2962897 - Gen Comp Endocrinol. 1987 Nov;68(2):189-96
– reference: 17132852 - Pharmacol Rev. 2006 Dec;58(4):742-59
– reference: 17327420 - Mol Endocrinol. 2007 May;21(5):1028-38
– reference: 12387968 - Lancet. 2002 Oct 12;360(9340):1155-62
– reference: 17073797 - Biochem Soc Trans. 2006 Dec;34(Pt 6):1256-60
– reference: 9460643 - J Mol Endocrinol. 1997 Dec;19(3):207-26
– reference: 15583024 - Endocr Rev. 2004 Dec;25(6):947-70
– reference: 9972448 - Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1998 Nov;121(1-3):15-22
– reference: 9021275 - Comput Appl Biosci. 1996 Dec;12(6):543-8
– reference: 11729094 - Annu Rev Entomol. 2002;47:883-916
– reference: 15520817 - Nat Rev Drug Discov. 2004 Nov;3(11):950-64
– reference: 16529801 - Cell. 2006 Mar 24;124(6):1209-23
– reference: 1633570 - Comput Appl Biosci. 1992 Jun;8(3):275-82
– reference: 11331759 - Proc Natl Acad Sci U S A. 2001 May 8;98(10):5671-6
– reference: 15632317 - Endocr Rev. 2005 Jun;26(4):525-82
– reference: 12655646 - Bioessays. 2003 Apr;25(4):396-400
– reference: 17502430 - J Pharmacol Exp Ther. 2007 Aug;322(2):843-51
– reference: 18298845 - BMC Evol Biol. 2008;8:60
– reference: 16860536 - Genomics. 2006 Dec;88(6):820-30
– reference: 15364295 - Comp Biochem Physiol B Biochem Mol Biol. 2004 Sep;139(1):123-8
– reference: 17875331 - Aquat Toxicol. 2007 Nov 30;85(2):113-23
– reference: 16601189 - Science. 2006 Apr 7;312(5770):97-101
– reference: 11165032 - Mol Cell Endocrinol. 2001 Jan 22;171(1-2):211-5
– reference: 17360327 - Proc Natl Acad Sci U S A. 2007 Mar 20;104(12):5014-9
– reference: 17500592 - PLoS Genet. 2007 May 11;3(5):e67
– reference: 17132856 - Pharmacol Rev. 2006 Dec;58(4):798-836
– reference: 16406821 - Comp Biochem Physiol C Toxicol Pharmacol. 2006 Jan-Feb;142(1-2):142-50
– reference: 15318951 - BMC Bioinformatics. 2004 Aug 19;5:113
– reference: 11729302 - Science. 2001 Nov 30;294(5548):1866-70
– reference: 14530136 - Syst Biol. 2003 Oct;52(5):696-704
SSID ssj0009580
Score 2.3713865
Snippet Steroid hormones regulate many physiological processes in vertebrates, nematodes, and arthropods through binding to nuclear receptors (NR), a metazoan-specif...
Steroid hormones regulate many physiological processes in vertebrates, nematodes, and arthropods through binding to nuclear receptors (NR), a metazoan-specific...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11913
SubjectTerms Animals
arthropods
Biological Sciences
Computer Science
cytochrome P-450
Cytochrome P-450 Enzyme System - genetics
Endocrine system
Enzymes
Evolution
Evolution, Molecular
Gene Duplication
genome
Genomics
Hormones
Hormones - metabolism
Life Sciences
Ligands
Likelihood Functions
Models, Genetic
Molecules
Nematoda
Nematodes
Nuclear receptors
Oxidoreductases - genetics
Phylogenetics
Phylogeny
Receptors
Signal Transduction
Species Specificity
Steroid hormones
steroidogenesis
Steroids
Steroids - metabolism
transcription factors
Vertebrates
Vertebrates - genetics
Xenobiotics
Title Independent Elaboration of Steroid Hormone Signaling Pathways in Metazoans
URI https://www.jstor.org/stable/40484057
http://www.pnas.org/content/106/29/11913.abstract
https://www.ncbi.nlm.nih.gov/pubmed/19571007
https://www.proquest.com/docview/201327329
https://www.proquest.com/docview/46328347
https://www.proquest.com/docview/67510211
https://hal.inrae.fr/hal-02666864
https://pubmed.ncbi.nlm.nih.gov/PMC2715501
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeOEF2GBQxiVCPAxV6ZrEcZLHiDG6MapKdGhvluM4asWWTmtaYD-W38I5iXObWjR4qdrYSRyfr-eWcyHknS0i1xYiMD1KY5P6MTWDgcAoQkCPtAYwhA79LyM2PKMn5-55p_O7EbW0zKK-vFmbV_I_VIVjQFfMkv0HylYXhQPwHegLn0Bh-LwTjY-rHrZZTzXICQog1j-Yz-LeFHTSOSiSGKchitRz0Pl-iF95HOylysTNXGiPndZRx5VMW5QRBKPSZRjWCSiaKyx6Zm88Chuu7evv81XubhcR2OEXdRjtRKww2ymnqgB5VAV3HIrl1XSWmt8wMfFSFKUQMO8hE_Uc9GOq2c_GS5Je2G85LTBPyrRrp8XfVt3k1jZIUFrkWPdVwaBBvzEZLVqMVhx8wBpQ1R6UgiFj_TqnId3xt79WdACvw37HqVj0QU2yLSx9tqZI9zD8yseHR_z0ePS5PVpV6x6Gp3wKYALzljGf0RVY5_dtMGOww8anc6tRFNovUqT0c5alpzzn4NY6WlrTvSnG7Bbhs1iTF6aus49uh_k29KbJY_JQGzxGWKB3m3RUukMelc1EDE2PHbJdUsbY16XQ3z8hJw2EGw2EG_PE0Ag3NMKNCuFGiXBjlhoVwp-Ss6OPkw9DU3f_MCVzBpnpKEv6Fktc5glPRsp3JbATCVsWJVEsPBXQREYxbGMkEhU7jhdLED4JSE0rArXM2SVbKdz-OTEGLmZ8U-m4yqdOEgeu9GXA_ECpRCg76JJ-ubtc6tL42KHlguchGp7DcY95TY4u2a9OuCqqwmye-haxUM5aj48u2c2pWU2jIFjRlOqSbn69-iaM2wHPUQ1X3jjGEx061iV7JTC45lwLbuMLVs_BB39TjYJYwXeFIlXz5YJT5oDhQb3NM5gH4ty2YO3PCpjVCwlcrBkG53otALY2oT2SzqZ5aXvbQ5eJ9eIum7ZHHtSs5SXZyq6X6hVYCFn0Ov-b_QFXIBKW
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Independent+elaboration+of+steroid+hormone+signaling+pathways+in+metazoans&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Markov%2C+Gabriel+V&rft.au=Tavares%2C+Raquel&rft.au=Dauphin-Villemant%2C+Chantal&rft.au=Demeneix%2C+Barbara+A.&rft.date=2009-07-21&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=106&rft.issue=29&rft.spage=11913&rft.epage=11918&rft_id=info:doi/10.1073%2Fpnas.0812138106&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02666864v1
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F106%2F29.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F106%2F29.cover.gif