Learning and cognitive flexibility: frontostriatal function and monoaminergic modulation
Learning in a constant environment, and adapting flexibly to a changing one, through changes in reinforcement contingencies or valence-free cues, depends on overlapping circuitry that interconnects the prefrontal cortex (PFC) with the striatum and is subject to several forms of neurochemical modulat...
Saved in:
Published in | Current opinion in neurobiology Vol. 20; no. 2; pp. 199 - 204 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.04.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Learning in a constant environment, and adapting flexibly to a changing one, through changes in reinforcement contingencies or valence-free cues, depends on overlapping circuitry that interconnects the prefrontal cortex (PFC) with the striatum and is subject to several forms of neurochemical modulation. We present evidence from recent studies in animals employing electrophysiological, pharmacological and lesion techniques, and neuroimaging, neuropsychological and pharmacological investigations of healthy humans and clinical patients. Dopamine (DA) neurotransmission in the medial striatum and PFC is critical for basic reinforcement learning and the integration of negative feedback during reversal learning, whilst orbitofrontal 5-hydroxytryptamine (5-HT) likely mediates this type of low level flexibility, perhaps by reducing interference from salient stimuli. The role of prefrontal noradrenaline (NA) in higher order flexibility indexed through attentional set-shifting has recently received significant empirical support, and similar avenues appear promising in the field of task switching. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ISSN: | 0959-4388 1873-6882 1873-6882 |
DOI: | 10.1016/j.conb.2010.01.007 |