Maternal adverse childhood experiences impact fetal adrenal volume in a sex-specific manner

The mechanisms by which parental early life stress can be transmitted to the next generation, in some cases in a sex-specific manner, are unclear. Maternal preconception stress may increase susceptibility to suboptimal health outcomes via in utero programming of the fetal hypothalamic-pituitary-adre...

Full description

Saved in:
Bibliographic Details
Published inBiology of sex differences Vol. 14; no. 1; p. 7
Main Authors Duffy, Korrina A, Sammel, Mary D, Johnson, Rachel L, Kim, Deborah R, Wang, Eileen Y, Ewing, Grace, Hantsoo, Liisa, Kornfield, Sara L, Bale, Tracy L, Epperson, C Neill
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 17.02.2023
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The mechanisms by which parental early life stress can be transmitted to the next generation, in some cases in a sex-specific manner, are unclear. Maternal preconception stress may increase susceptibility to suboptimal health outcomes via in utero programming of the fetal hypothalamic-pituitary-adrenal (HPA) axis. We recruited healthy pregnant women (N = 147), dichotomized into low (0 or 1) and high (2+) adverse childhood experience (ACE) groups based on the ACE Questionnaire, to test the hypothesis that maternal ACE history influences fetal adrenal development in a sex-specific manner. At a mean (standard deviation) of 21.5 (1.4) and 29.5 (1.4) weeks gestation, participants underwent three-dimensional ultrasounds to measure fetal adrenal volume, adjusting for fetal body weight ( FAV). At ultrasound 1, FAV was smaller in high versus low ACE males (b = - 0.17; z = - 3.75; p < .001), but females did not differ significantly by maternal ACE group (b = 0.09; z = 1.72; p = .086). Compared to low ACE males, FAV was smaller for low (b = - 0.20; z = - 4.10; p < .001) and high ACE females (b = - 0.11; z = 2.16; p = .031); however, high ACE males did not differ from low (b = 0.03; z = .57; p = .570) or high ACE females (b = - 0.06; z = - 1.29; p = .196). At ultrasound 2, FAV did not differ significantly between any maternal ACE/offspring sex subgroups (ps ≥ .055). Perceived stress did not differ between maternal ACE groups at baseline, ultrasound 1, or ultrasound 2 (ps ≥ .148). We observed a significant impact of high maternal ACE history on FAV, a proxy for fetal adrenal development, but only in males. Our observation that the FAV in males of mothers with a high ACE history did not differ from the FAV of females extends preclinical research demonstrating a dysmasculinizing effect of gestational stress on a range of offspring outcomes. Future studies investigating intergenerational transmission of stress should consider the influence of maternal preconception stress on offspring outcomes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2042-6410
2042-6410
DOI:10.1186/s13293-023-00492-0