一类具有饱和传染率的SVEIR传染病模型的定性分析
建立带有接种的SVEIR传染病模型,得到基本再生数R_0,并讨论平衡点的存在性.通过构造Lyapunov函数及利用LaSalle不变原理,研究连续接种对传染病传播的影响.发现传染病模型的全局稳定性由基本再生数R0决定,当R0〈1时,无病平衡点全局渐近稳定.当R0〉1时,地方病平衡点全局渐近稳定.接种是控制疾病传播的有效途径....
Saved in:
Published in | 西安工程大学学报 Vol. 31; no. 5; pp. 706 - 712 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
西安工程大学 理学院,陕西 西安,710048
2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | 建立带有接种的SVEIR传染病模型,得到基本再生数R_0,并讨论平衡点的存在性.通过构造Lyapunov函数及利用LaSalle不变原理,研究连续接种对传染病传播的影响.发现传染病模型的全局稳定性由基本再生数R0决定,当R0〈1时,无病平衡点全局渐近稳定.当R0〉1时,地方病平衡点全局渐近稳定.接种是控制疾病传播的有效途径. |
---|---|
Bibliography: | WU Mengyuan ,SUN Faguo ,CHEN Yao (School of Science,Xi'an Polytechnic University,Xi'an710048,China) continuous vaccination;saturation incidence rate;basic reproduction number;global stability 61-1471/N The SVEIR infectious disease model with vaccination is established,the basic repro-duction number is obtained,and the existence of the equilibrium point is discussed.The effects of continuous vaccination on infectious diseases by constructing Lyapunov function and the La-Salle's invariance principle.It is pointed out that the basic reproduction number R 0 determines the global stability of the epidemic model.When R 0〈1,the disease-free equilibrium is globally asymptotically stable.When R 0〉 1,the endemic equilibrium is globally asymptotically stable. The results show that continuous vaccination is an effective way to control the disease. |
ISSN: | 1674-649X |
DOI: | 10.13338/j.issn.1674-649x.2017.05.018 |