高精度自适应小波神经网络人工智能方法探索
U621%TP273; 针对当前人工智能方法存在的训练精度瓶颈问题和智能系统对高精度人工智能方法的迫切需求问题,结合小波分析和BP(back propagation)、RBF(radial basis function)神经网络的优点,提出了自适应小波神经网络(adaptive wavelet neural network,AWNN)方法,将其应用于智能视频分析系统和智能控制系统,并验证了AWNN方法可以取得更好的收敛性、准确性、精度等.通过对AWNN方法与经典的神经网络进行理论分析,并与计算机仿真进行对比分析,验证了该方法可以提升经典神经网络的速度和精度;进而通过将AWNN方法植入真实的视频...
Saved in:
Published in | 计算机科学与探索 Vol. 10; no. 8; pp. 1122 - 1132 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | Chinese |
Published |
首都经济贸易大学信息学院,北京100070
2016
北京工业大学电子信息与控制工程学院,北京100124%清华大学信息技术研究院,北京,100084%北京工业大学电子信息与控制工程学院,北京,100124 |
Subjects | |
Online Access | Get full text |
ISSN | 1673-9418 |
DOI | 10.3778/j.issn.1673-9418.1602015 |
Cover
Summary: | U621%TP273; 针对当前人工智能方法存在的训练精度瓶颈问题和智能系统对高精度人工智能方法的迫切需求问题,结合小波分析和BP(back propagation)、RBF(radial basis function)神经网络的优点,提出了自适应小波神经网络(adaptive wavelet neural network,AWNN)方法,将其应用于智能视频分析系统和智能控制系统,并验证了AWNN方法可以取得更好的收敛性、准确性、精度等.通过对AWNN方法与经典的神经网络进行理论分析,并与计算机仿真进行对比分析,验证了该方法可以提升经典神经网络的速度和精度;进而通过将AWNN方法植入真实的视频分析系统进行实验,验证了AWNN方法与现有的视频分析技术相比具有更准确的内容分类能力;最终将AWNN方法与经典控制方法相结合,通过与两种现有的神经网络控制方法进行对比分析,验证了AWNN控制方法具有更好的控制性能. |
---|---|
ISSN: | 1673-9418 |
DOI: | 10.3778/j.issn.1673-9418.1602015 |