g-C3N4修饰β-ZnMoO4光催化降解磺胺二甲嘧啶:合成方法的影响、降解动力学及机理
在过去几十年中,钼酸盐在功能材料领域的应用备受关注.例如,半导体材料二价金属钼酸盐MMoO4(M=Ca,Mg,Zn)在发光、催化、电容器、闪烁探测器等方面已有良好的应用.研究表明,钼酸锌在紫外或可见光照射下能够有效降解甲基橙、维多利亚蓝、苯酚等污染物.中国拥有丰富的钼资源,目前钼主要用于生产高强度钢.制备钼基高效除污除材料可作为钼资源的另一种高附加值利用模式.氮化碳(g-C3N4)作为一种低成本的光活性改性剂,可提高半导体材料的光催化性能.迄今为止,基于氮化碳复合材料的制备方法包括:原位水热合成、超声波复合、一步升温合成和沉淀法等.然而,很少讨论合成方法对复合材料性能的影响.本文以β-ZnMo...
Saved in:
Published in | 催化学报 Vol. 38; no. 12; pp. 2009 - 2020 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
武汉大学资源与环境科学学院, 湖北省资源与能源可持续利用技术示范型国际科技合作基地, 湖北武汉430079%武汉大学土木建筑工程学院,湖北武汉,430072
2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0253-9837 1872-2067 |
DOI | 10.1016/S1872-2067(17)62935-8 |
Cover
Summary: | 在过去几十年中,钼酸盐在功能材料领域的应用备受关注.例如,半导体材料二价金属钼酸盐MMoO4(M=Ca,Mg,Zn)在发光、催化、电容器、闪烁探测器等方面已有良好的应用.研究表明,钼酸锌在紫外或可见光照射下能够有效降解甲基橙、维多利亚蓝、苯酚等污染物.中国拥有丰富的钼资源,目前钼主要用于生产高强度钢.制备钼基高效除污除材料可作为钼资源的另一种高附加值利用模式.氮化碳(g-C3N4)作为一种低成本的光活性改性剂,可提高半导体材料的光催化性能.迄今为止,基于氮化碳复合材料的制备方法包括:原位水热合成、超声波复合、一步升温合成和沉淀法等.然而,很少讨论合成方法对复合材料性能的影响.本文以β-ZnMoO4为主体材料,g-C3N4为修饰材料,首次制备了两者复合的新型光催化剂.采用不同的方法和条件制备了β-ZnMoO4和β-ZnMoO4/C3N4复合材料,探讨了合成方法对复合材料光催化性能的影响,并进一步研究了材料光催化降解磺胺二甲嘧啶的动力学和降解途径.以钼酸钠和硝酸锌为原料,在不同温度和时间条件下,采用水热法合成得到了两种不同形貌的β-ZnMoO4材料.光催化降解实验结果显示,水热合成条件对催化剂的光催化活性影响很大,280oC水热条件下维持24h,得到表面光滑的不规则微米颗粒(β-ZnMoO4-280),其光催化活性高于180oC条件下获得的片状形貌的钼酸锌材料(β-ZnMoO4-180).β-ZnMoO4/C3N4复合材料通过原位水热法和超声法合成,结果显示,原位水热合成条件下获得的β-ZnMoO4-180/C3N4光催化剂对磺胺二甲嘧啶表现出显著增强的降解能力.相比之下,在280oC水热条件下,C3N4颗粒发生逐步分解,且反应开始时C3N4颗粒会扰乱β-ZnMoO4-280晶体生长的连续性,使复合材料性能下降.对于超声法合成的β-ZnMoO4/C3N4材料,两种β-ZnMoO4/C3N4复合材料的光催化活性均提高,但提高程度不及水热法180oC条件下制备的材料.结果表明,对于光催化复合材料的制备,要选择适当的合成方法,才能得到高性能复合光催化材料,本文采用180oC的水热合成条件,添加3%g-C3N4,可得到性能最佳的β-ZnMoO4-180/C3N4复合光催化剂.添加自由基抑制剂的光催化降解实验结果表明,超氧负离子(?O2–)和空穴(h+)在降解中起主导作用.β-ZnMoO4/C3N4复合材料光催化活性的增强归因 |
---|---|
Bibliography: | In the present study,zinc molybdate(β‐ZnMoO4)and graphitic carbon nitride(g‐C3N4)‐modifiedβ‐ZnMoO4(β‐ZnMoO4/g‐C3N4)were prepared to decontaminate aqueous solutions from the antibiotic sulfamethazine(SMZ).Our results revealed that the hydrothermal synthesis method greatly influenced the photocatalytic activity of the resultant catalysts.The pristineβ‐ZnMoO4samples obtained under more intensive synthesis conditions(24h at280°C)showed higher photocatalytic activity than that prepared for12h at180°C(denotedβ‐ZnMoO4‐180).In the case of in situ hydrothermal synthesis ofβ‐ZnMoO4/g‐C3N4,a surface‐modified sample was only obtained under the reaction conditions of180°C for12h.Compared with the sheet‐likeβ‐ZnMoO4‐180sample,theβ‐ZnMoO4‐180/g‐C3N4composite showed enhanced photocatalytic activity for the degradation of SMZ.By contrast,the hydrothermal reaction at280°C caused the gradual decomposition of g‐C3N4.It is believed that the structural incorporation of g‐C3N4intoβ‐ZnMoO4at280°C might disrupt the crystal growth,the |
ISSN: | 0253-9837 1872-2067 |
DOI: | 10.1016/S1872-2067(17)62935-8 |