The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection fatality rate (IFR) doubles with every 5 y of age from childhood onward. Circulating autoantibodies neutralizing IFN-α, IFN-ω, and/or IFN-β are found in ∼20% of deceased patients across age groups, and in ∼1% of individuals aged...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 119; no. 21; pp. e2200413119 - 363 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
24.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection fatality rate (IFR) doubles with every 5 y of age from childhood onward. Circulating autoantibodies neutralizing IFN-α, IFN-ω, and/or IFN-β are found in ∼20% of deceased patients across age groups, and in ∼1% of individuals aged <70 y and in >4% of those >70 y old in the general population. With a sample of 1,261 unvaccinated deceased patients and 34,159 individuals of the general population sampled before the pandemic, we estimated both IFR and relative risk of death (RRD) across age groups for individuals carrying autoantibodies neutralizing type I IFNs, relative to noncarriers. The RRD associated with any combination of autoantibodies was higher in subjects under 70 y old. For autoantibodies neutralizing IFN-α2 or IFN-ω, the RRDs were 17.0 (95% CI: 11.7 to 24.7) and 5.8 (4.5 to 7.4) for individuals <70 y and ≥70 y old, respectively, whereas, for autoantibodies neutralizing both molecules, the RRDs were 188.3 (44.8 to 774.4) and 7.2 (5.0 to 10.3), respectively. In contrast, IFRs increased with age, ranging from 0.17% (0.12 to 0.31) for individuals <40 y old to 26.7% (20.3 to 35.2) for those ≥80 y old for autoantibodies neutralizing IFN-α2 or IFN-ω, and from 0.84% (0.31 to 8.28) to 40.5% (27.82 to 61.20) for autoantibodies neutralizing both. Autoantibodies against type I IFNs increase IFRs, and are associated with high RRDs, especially when neutralizing both IFN-α2 and IFN-ω. Remarkably, IFRs increase with age, whereas RRDs decrease with age. Autoimmunity to type I IFNs is a strong and common predictor of COVID-19 death. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 PMCID: PMC9173764 Author contributions: J. Manry, L.A., and A.C. designed research; J. Manry, P. Bastard, A. Gervais, T.L.V., J.R., Q.P., E.M., H.-H.H., S.E., M.G.-P., L. Bizien, A.P.-M., R.Y., L. Haljasmägi, M.M., K. Särekannu, J. Maslovskaja, C.-E.L., S.T.-A., A. Belot, K. Saker, L.B.R., E.S., A. Fekkar, O.M.D., Y.Z., S.M.H., M.M.-V., A.A.A., B.B., V.B., S.-Y.Z., L.D.N., H.C.S., K.K., S.O., A. Puel, E.J., C.M.R., Q.Z., and A.C. performed research; P. Bastard, J.R., N.d.P., Y.T.-L., B.A.-B., A. Gaudet, J.P., P.M., P.R., F. Cognasse, J. Troya, S.T.-A., A. Belot, K. Saker, P.G., J.G.R., J.-C.L., S.G., T.M., J. Tanaka, D. Dalmau, P.-L.T., D.S., A. Stepanian, B.M., V.T., J.R.H., J.L.F., J.-M.A., J.S.-V., L.I., A. Biondi, P. Bonfanti, R. Castagnoli, A.L.S., C.M.B., L.L., S. Boucherit, D.A., A.M.P., F.H., S. Duvlis, T.O., S.K., A.A.B., J.E.B., C.R.-S., S.P., Q.P.-H., L. Hammarström, A.D., A. Kurolap, C.N.M., A.A., G.C., V.L., F. Ciceri, L.A.B., E.D.-G., M. Vidigal, M. Zatz, D.v.d.B., S. Sahanic, I.T., Y.S., O.B., Y.N., M.T., L.V., S.G.T., S. Burrel, D. Duffy, L.Q.-M., A. Klocperk, N.Y.K., A. Shcherbina, Y.-L.L., D.L., M. Coulongeat, J. Marlet, R.K., L.F.R., A.C.-G., F.V., G.M., M.C.N., R.A., I.B., H.B.-F., D.H., J.W., I.M., A.H.D., S.P.K., N.M.B., R.H., F.S.S.-A., K.D., J.S., S.M.S., S.A., R.R.-B., F.M., L. Roussel, D.C.V., C.E., A.C.-N., C.P., A. Bondarenko, A.N.S., L.G., J.F., S.L., K.B., R.P.L., S.M., M.S.A., E.A., O.H., A. Pujol, P.P., T.H.M., L. Rowen, J. Mond, S. Debette, X.d.L., C.B., L. Bouadma, M. Zins, P.S.-P., R. Colobran, G.G., X.S., S. Susen, J.M.-P., D.R., M. Vasse, P.K.G., L.P., C.R.-G., L.D.N., H.C.S., P.T., Q.Z., and J.-L.C. contributed new reagents/analytic tools; J. Manry, L.A., and A.C. analyzed data; and J. Manry, J.-L.C., L.A., and A.C. wrote the paper. 4Present address: Hypoxia and Lung INSERM U1272, Pneumologie & Infectiologie INSERM UMR 1137, Infection Antimicrobials Modelling Evolution, Centre Hospitalier Saint-Denis, 93200 Saint-Denis, France. 10J.-L.C., L.A., and A.C. contributed equally to this work. 2P. Bastard, A. Gervais, T.L.V., J.R., and Q.P. contributed equally to this work. 7E.A., O.H., A. Pujol, P.P., T.H.M., L. Rowen, J. Mond, S. Debette, X.d.L., C.B., L. Bouadma, M. Zins, P.S.-P., R. Colobran, G.G., X.S., S. Susen, J.M.-P., D.R., M. Vasse, P.K.G., L.P., and C.R.-G. contributed equally to this work. 9L.D.N., H.C.S., K.K., S.O., A. Puel, E.J., C.M.R., P.T., Q.Z. contributed equally to this work. Contributed by Jean-Laurent Casanova; received January 10, 2022; accepted March 17, 2022; reviewed by Mary Carrington, Antoine Flahault, and Amalio Telenti 5Present address: National Academy of Medicine of Colombia, 110231 Bogota, Colombia. 3E.M., H.-H.H., S.E., M.G.-P., L. Bizien, A.P.-M., R.Y., L. Haljasmägi, M.M., K. Särekannu, and J. Maslovskaja contributed equally to this work. 6Lists of members of consortia are available in SI Appendix. 8Present address: Gain Therapeutics, 6900 Lugano, Switzerland. |
ISSN: | 0027-8424 1091-6490 1091-6490 |
DOI: | 10.1073/pnas.2200413119 |