Accounting for Bias in Estimates of the Rate of Polygenic Mutation

Experimental data on the rate of response to artificial selection in initially inbred lines or the rate of divergence among inbred sublines can be used to estimate the rate of increase in variance of quantitative traits from new mutations. So far estimates have been based on the infinitesimal model...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the Royal Society. B, Biological sciences Vol. 253; no. 1338; pp. 291 - 296
Main Authors Keightley, Peter D., Mackay, Trudy Frances Charlene, Caballero, Armando
Format Journal Article
LanguageEnglish
Published London The Royal Society 22.09.1993
Royal Society of London
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Experimental data on the rate of response to artificial selection in initially inbred lines or the rate of divergence among inbred sublines can be used to estimate the rate of increase in variance of quantitative traits from new mutations. So far estimates have been based on the infinitesimal model of many genes with small additive effects which imply a rate of increase in heritability for Drosophila melanogaster bristle number traits of about 0.1% per generation. Such estimates are biased because mutants tend to have large effects, to have non-additive gene action, and to be deleterious. Here, recent information on the distribution of effects of new mutations on Drosophila melanogaster bristle number and viability is used to infer the direction and magnitude of this bias. The infinitesimal model tends to underestimate the mutational variance, typically by a factor of about 3, but this factor depends on the experimental design. Averages of revised estimates, accounting for this bias, of the per generation increment in heritability from mutation are 0.36% and 0.21% for abdominal and sternopleural bristle number, respectively, in experiments involving M strains, and 1.4% and 0.7% for abdominals and sternopleurals, respectively, in P strains.
Bibliography:ark:/67375/V84-WP7DZGVX-C
istex:01E631FB3D10A024AF1D9E0D7D6BD35628D7389A
This text was harvested from a scanned image of the original document using optical character recognition (OCR) software. As such, it may contain errors. Please contact the Royal Society if you find an error you would like to see corrected. Mathematical notations produced through Infty OCR.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0962-8452
1471-2954
DOI:10.1098/rspb.1993.0116