Moonstone: a novel natural language processing system for inferring social risk from clinical narratives

Social risk factors are important dimensions of health and are linked to access to care, quality of life, health outcomes and life expectancy. However, in the Electronic Health Record, data related to many social risk factors are primarily recorded in free-text clinical notes, rather than as more re...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomedical semantics Vol. 10; no. 1; pp. 6 - 10
Main Authors Conway, Mike, Keyhani, Salomeh, Christensen, Lee, South, Brett R., Vali, Marzieh, Walter, Louise C., Mowery, Danielle L., Abdelrahman, Samir, Chapman, Wendy W.
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 11.04.2019
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Social risk factors are important dimensions of health and are linked to access to care, quality of life, health outcomes and life expectancy. However, in the Electronic Health Record, data related to many social risk factors are primarily recorded in free-text clinical notes, rather than as more readily computable structured data, and hence cannot currently be easily incorporated into automated assessments of health. In this paper, we present Moonstone, a new, highly configurable rule-based clinical natural language processing system designed to automatically extract information that requires inferencing from clinical notes. Our initial use case for the tool is focused on the automatic extraction of social risk factor information - in this case, housing situation, living alone, and social support - from clinical notes. Nursing notes, social work notes, emergency room physician notes, primary care notes, hospital admission notes, and discharge summaries, all derived from the Veterans Health Administration, were used for algorithm development and evaluation. An evaluation of Moonstone demonstrated that the system is highly accurate in extracting and classifying the three variables of interest (housing situation, living alone, and social support). The system achieved positive predictive value (i.e. precision) scores ranging from 0.66 (homeless/marginally housed) to 0.98 (lives at home/not homeless), accuracy scores ranging from 0.63 (lives in facility) to 0.95 (lives alone), and sensitivity (i.e. recall) scores ranging from 0.75 (lives in facility) to 0.97 (lives alone). The Moonstone system is - to the best of our knowledge - the first freely available, open source natural language processing system designed to extract social risk factors from clinical text with good (lives in facility) to excellent (lives alone) performance. Although developed with the social risk factor identification task in mind, Moonstone provides a powerful tool to address a range of clinical natural language processing tasks, especially those tasks that require nuanced linguistic processing in conjunction with inference capabilities.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1480
2041-1480
DOI:10.1186/s13326-019-0198-0