High Abundance of the Epibenthic Trachymedusa Ptychogastria polaris Allman, 1878 (Hydrozoa, Trachylina) in Subpolar Fjords along the West Antarctic Peninsula

Medusae can be conspicuous and abundant members of seafloor communities in deep-sea benthic boundary layers. The epibenthic trachymedusa, Ptychogastria polaris Allman, 1878 (Hydrozoa: Trachylina: Ptychogastriidae) occurs in the cold, high latitude systems of both the northern and southern hemisphere...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 12; no. 1; p. e0168648
Main Authors Grange, Laura J, Smith, Craig R, Lindsay, Dhugal J, Bentlage, Bastian, Youngbluth, Marsh J
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.01.2017
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Medusae can be conspicuous and abundant members of seafloor communities in deep-sea benthic boundary layers. The epibenthic trachymedusa, Ptychogastria polaris Allman, 1878 (Hydrozoa: Trachylina: Ptychogastriidae) occurs in the cold, high latitude systems of both the northern and southern hemispheres, with a circumpolar distribution in Arctic and sub-Arctic areas, and disjunct reports of a few individuals from Antarctica. In January-February 2010, during benthic megafaunal photosurveys in three subpolar fjords along the West Antarctic Peninsula (Andvord, Flandres and Barilari Bays), P. polaris was recorded in Antarctic Peninsula waters. The trachymedusa, identified from megacore-collected specimens, was a common component of the epifauna in the sediment floored basins at 436-725 m depths in Andvord and Flandres Bays, reaching densities up to 13 m-2, with mean densities in individual basins ranging from 0.06 to 4.19 m-2. These densities are 2 to 400-fold higher than previously reported for P. polaris in either the Arctic or Antarctic. This trachymedusa had an aggregated distribution, occurring frequently in Andvord Bay, but was often solitary in Flandres Bay, with a distribution not significantly different from random. Epibenthic individuals were similar in size, typically measuring 15-25 mm in bell diameter. A morphologically similar trachymedusa, presumably the same species, was also observed in the water column near the bottom in all three fjords. This benthopelagic form attained abundances of up to 7 m-2 of seafloor; however, most P. polaris (~ 80%), were observed on soft sediments. Our findings indicate that fjords provide a prime habitat for the development of dense populations of P. polaris, potentially resulting from high and varied food inputs to the fjord floors. Because P. polaris resides in the water column and at the seafloor, large P. polaris populations may contribute significantly to pelagic-benthic coupling in the WAP fjord ecosystems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
Current address: Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, United Kingdom
Conceptualization: CRS DJL LJG MJY.Formal analysis: BB CRS LJG.Funding acquisition: CRS.Investigation: BB CRS DJL LJG.Methodology: CRS.Project administration: CRS.Resources: BB CRS DJL.Supervision: CRS.Visualization: BB DJL LJG.Writing – original draft: BB DJL LJG.Writing – review & editing: BB CRS DJL LJG MJY.
Current address: University of Guam Marine Lab, UOG Station, Mangilao, Guam, United States of America
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0168648