Biomechanics of actin filaments: A computational multi-level study

Abstract The actin microfilament (F-actin) is a structural and functional component of the cell cytoskeleton. Notwithstanding the primary role it plays for the mechanics of the cell, the mechanical behaviour of F-actin is still not totally explored. In particular, the relationship between the mechan...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomechanics Vol. 44; no. 4; pp. 630 - 636
Main Authors Deriu, Marco A, Bidone, Tamara C, Mastrangelo, Francesco, Di Benedetto, Giacomo, Soncini, Monica, Montevecchi, Franco M, Morbiducci, Umberto
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 24.02.2011
Elsevier
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract The actin microfilament (F-actin) is a structural and functional component of the cell cytoskeleton. Notwithstanding the primary role it plays for the mechanics of the cell, the mechanical behaviour of F-actin is still not totally explored. In particular, the relationship between the mechanics of F-actin and its molecular architecture is not completely understood. In this study, the mechanical properties of F-actin were related to the molecular topology of its building monomers (G-actin) by employing a computational multi-level approach. F-actins with lengths up to 500 nm were modelled and characterized, using a combination of equilibrium molecular dynamics (MD) simulations and normal mode analysis (NMA). MD simulations were performed to analyze the molecular rearrangements of G-actin in physiological conditions; NMA was applied to compute the macroscopic properties of F-actin from its vibrational modes of motion. Results from this multi-level approach showed that bending stiffness, bending modulus and persistence length are independent from the length of F-actin. On the contrary, the orientations and motions of selected groups of residues of G-actin play a primary role in determining the filament flexibility. In conclusion, this study (i) demonstrated that a combined computational approach of MD and NMA allows to investigate the biomechanics of F-actin taking into account the molecular topology of the filament (i.e., the molecular conformations of G-actin) and (ii) that this can be done using only crystallographic G-actin, without the need of introducing experimental parameters nor of reducing the number of residues.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0021-9290
1873-2380
DOI:10.1016/j.jbiomech.2010.11.014