Molecular basis for SH3 domain regulation of F-BAR-mediated membrane deformation
Members of the Bin/amphiphysin/Rvs (BAR) domain protein superfamily are involved in membrane remodeling in various cellular pathways ranging from endocytic vesicle and T-tubule formation to cell migration and neuromorphogenesis. Membrane curvature induction and stabilization are encoded within the B...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 107; no. 18; pp. 8213 - 8218 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
04.05.2010
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Members of the Bin/amphiphysin/Rvs (BAR) domain protein superfamily are involved in membrane remodeling in various cellular pathways ranging from endocytic vesicle and T-tubule formation to cell migration and neuromorphogenesis. Membrane curvature induction and stabilization are encoded within the BAR or Fer-CIP4 homology-BAR (F-BAR) domains, α-helical coiled coils that dimerize into membrane-binding modules. BAR/F-BAR domain proteins often contain an SH3 domain, which recruits binding partners such as the oligomeric membrane-fissioning GTPase dynamin. How precisely BAR/F-BAR domain-mediated membrane deformation is regulated at the cellular level is unknown. Here we present the crystal structures of full-length syndapin 1 and its F-BAR domain. Our data show that syndapin 1 F-BAR-mediated membrane deformation is subject to autoinhibition by its SH3 domain. Release from the clamped conformation is driven by association of syndapin 1 SH3 with the proline-rich domain of dynamin 1, thereby unlocking its potent membrane-bending activity. We hypothesize that this mechanism might be commonly used to regulate BAR/F-BAR domain-induced membrane deformation and to potentially couple this process to dynamin-mediated fission. Our data thus suggest a structure-based model for SH3-mediated regulation of BAR/F-BAR domain function. |
---|---|
Bibliography: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 1Y.R. and Q.M. contributed equally to this work. Communicated by Gottfried Schatz, University of Basel, Reinach, Switzerland, March 18, 2010 (received for review February 2, 2010) Author contributions: Q.M., O.S., W.S., and V.H. designed research; Y.R., A.V.-F., A.S., A.P., and D.P. performed research; Q.M., L.L., and A.P. contributed new reagents/analytic tools; Y.R., Q.M., A.V.-F., A.S., D.P., O.S., W.S., and V.H. analyzed data; and W.S. and V.H. wrote the paper. |
ISSN: | 0027-8424 1091-6490 1091-6490 |
DOI: | 10.1073/pnas.1003478107 |