Rcorrector: efficient and accurate error correction for Illumina RNA-seq reads

Abstract Background Next-generation sequencing of cellular RNA (RNA-seq) is rapidly becoming the cornerstone of transcriptomic analysis. However, sequencing errors in the already short RNA-seq reads complicate bioinformatics analyses, in particular alignment and assembly. Error correction methods ha...

Full description

Saved in:
Bibliographic Details
Published inGigascience Vol. 4; no. 1; p. 48
Main Authors Song, Li, Florea, Liliana
Format Journal Article
LanguageEnglish
Published United States Oxford University Press 19.10.2015
BioMed Central
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Background Next-generation sequencing of cellular RNA (RNA-seq) is rapidly becoming the cornerstone of transcriptomic analysis. However, sequencing errors in the already short RNA-seq reads complicate bioinformatics analyses, in particular alignment and assembly. Error correction methods have been highly effective for whole-genome sequencing (WGS) reads, but are unsuitable for RNA-seq reads, owing to the variation in gene expression levels and alternative splicing. Findings We developed a k-mer based method, Rcorrector, to correct random sequencing errors in Illumina RNA-seq reads. Rcorrector uses a De Bruijn graph to compactly represent all trusted k-mers in the input reads. Unlike WGS read correctors, which use a global threshold to determine trusted k-mers, Rcorrector computes a local threshold at every position in a read. Conclusions Rcorrector has an accuracy higher than or comparable to existing methods, including the only other method (SEECER) designed for RNA-seq reads, and is more time and memory efficient. With a 5 GB memory footprint for 100 million reads, it can be run on virtually any desktop or server. The software is available free of charge under the GNU General Public License from https://github.com/mourisl/Rcorrector/.
AbstractList Next-generation sequencing of cellular RNA (RNA-seq) is rapidly becoming the cornerstone of transcriptomic analysis. However, sequencing errors in the already short RNA-seq reads complicate bioinformatics analyses, in particular alignment and assembly. Error correction methods have been highly effective for whole-genome sequencing (WGS) reads, but are unsuitable for RNA-seq reads, owing to the variation in gene expression levels and alternative splicing. We developed a k-mer based method, Rcorrector, to correct random sequencing errors in Illumina RNA-seq reads. Rcorrector uses a De Bruijn graph to compactly represent all trusted k-mers in the input reads. Unlike WGS read correctors, which use a global threshold to determine trusted k-mers, Rcorrector computes a local threshold at every position in a read. Rcorrector has an accuracy higher than or comparable to existing methods, including the only other method (SEECER) designed for RNA-seq reads, and is more time and memory efficient. With a 5 GB memory footprint for 100 million reads, it can be run on virtually any desktop or server. The software is available free of charge under the GNU General Public License from https://github.com/mourisl/Rcorrector/.
Background Next-generation sequencing of cellular RNA (RNA-seq) is rapidly becoming the cornerstone of transcriptomic analysis. However, sequencing errors in the already short RNA-seq reads complicate bioinformatics analyses, in particular alignment and assembly. Error correction methods have been highly effective for whole-genome sequencing (WGS) reads, but are unsuitable for RNA-seq reads, owing to the variation in gene expression levels and alternative splicing. Findings We developed a k-mer based method, Rcorrector, to correct random sequencing errors in Illumina RNA-seq reads. Rcorrector uses a De Bruijn graph to compactly represent all trusted k-mers in the input reads. Unlike WGS read correctors, which use a global threshold to determine trusted k-mers, Rcorrector computes a local threshold at every position in a read. Conclusions Rcorrector has an accuracy higher than or comparable to existing methods, including the only other method (SEECER) designed for RNA-seq reads, and is more time and memory efficient. With a 5 GB memory footprint for 100 million reads, it can be run on virtually any desktop or server. The software is available free of charge under the GNU General Public License from https://github.com/mourisl/Rcorrector/.
Next-generation sequencing of cellular RNA (RNA-seq) is rapidly becoming the cornerstone of transcriptomic analysis. However, sequencing errors in the already short RNA-seq reads complicate bioinformatics analyses, in particular alignment and assembly. Error correction methods have been highly effective for whole-genome sequencing (WGS) reads, but are unsuitable for RNA-seq reads, owing to the variation in gene expression levels and alternative splicing.BACKGROUNDNext-generation sequencing of cellular RNA (RNA-seq) is rapidly becoming the cornerstone of transcriptomic analysis. However, sequencing errors in the already short RNA-seq reads complicate bioinformatics analyses, in particular alignment and assembly. Error correction methods have been highly effective for whole-genome sequencing (WGS) reads, but are unsuitable for RNA-seq reads, owing to the variation in gene expression levels and alternative splicing.We developed a k-mer based method, Rcorrector, to correct random sequencing errors in Illumina RNA-seq reads. Rcorrector uses a De Bruijn graph to compactly represent all trusted k-mers in the input reads. Unlike WGS read correctors, which use a global threshold to determine trusted k-mers, Rcorrector computes a local threshold at every position in a read.FINDINGSWe developed a k-mer based method, Rcorrector, to correct random sequencing errors in Illumina RNA-seq reads. Rcorrector uses a De Bruijn graph to compactly represent all trusted k-mers in the input reads. Unlike WGS read correctors, which use a global threshold to determine trusted k-mers, Rcorrector computes a local threshold at every position in a read.Rcorrector has an accuracy higher than or comparable to existing methods, including the only other method (SEECER) designed for RNA-seq reads, and is more time and memory efficient. With a 5 GB memory footprint for 100 million reads, it can be run on virtually any desktop or server. The software is available free of charge under the GNU General Public License from https://github.com/mourisl/Rcorrector/.CONCLUSIONSRcorrector has an accuracy higher than or comparable to existing methods, including the only other method (SEECER) designed for RNA-seq reads, and is more time and memory efficient. With a 5 GB memory footprint for 100 million reads, it can be run on virtually any desktop or server. The software is available free of charge under the GNU General Public License from https://github.com/mourisl/Rcorrector/.
Abstract Background Next-generation sequencing of cellular RNA (RNA-seq) is rapidly becoming the cornerstone of transcriptomic analysis. However, sequencing errors in the already short RNA-seq reads complicate bioinformatics analyses, in particular alignment and assembly. Error correction methods have been highly effective for whole-genome sequencing (WGS) reads, but are unsuitable for RNA-seq reads, owing to the variation in gene expression levels and alternative splicing. Findings We developed a k-mer based method, Rcorrector, to correct random sequencing errors in Illumina RNA-seq reads. Rcorrector uses a De Bruijn graph to compactly represent all trusted k-mers in the input reads. Unlike WGS read correctors, which use a global threshold to determine trusted k-mers, Rcorrector computes a local threshold at every position in a read. Conclusions Rcorrector has an accuracy higher than or comparable to existing methods, including the only other method (SEECER) designed for RNA-seq reads, and is more time and memory efficient. With a 5 GB memory footprint for 100 million reads, it can be run on virtually any desktop or server. The software is available free of charge under the GNU General Public License from https://github.com/mourisl/Rcorrector/.
Author Song, Li
Florea, Liliana
Author_xml – sequence: 1
  givenname: Li
  surname: Song
  fullname: Song, Li
  organization: Department of Computer Science, Johns Hopkins University, 21218 Baltimore, USA
– sequence: 2
  givenname: Liliana
  surname: Florea
  fullname: Florea, Liliana
  email: florea@jhu.edu
  organization: Department of Computer Science, Johns Hopkins University, 21218 Baltimore, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26500767$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1r3DAUFCWl-Wh-QC_FkEsOcasn2ZKdQyCE5gNCCqGF3oQsPbcKXmkj2YH995XZTdkEGl2kh2ZGb95on-z44JGQT0C_ADTiawIuK1ZSqEtKm7ZcvSN7jFayZCB_7Wydd8lhSg80LymbRvIPZJeJOldC7pG7exNiRDOGeFpg3zvj0I-F9rbQxkxRj1hgjCEWG5wLvuhzeTMM08J5XdzfnZcJH4uI2qaP5H2vh4SHm_2A_Lz89uPiurz9fnVzcX5bGsHqsbRMskpzbSntNXCDVHBh29rapus51R3WlktkmgmoqLVaGMY4g6blHbad4QfkbK27nLoFWpN7jnpQy-gWOq5U0E69vPHuj_odnlQloM4zyALHG4EYHidMo1q4ZHAYtMcwJQWSybYFwWfo0SvoQ5iiz_YUBw7ZEKvYWyiQMueQX561Pm_3_a_h50AyQK4BJoaUIvbKuFHPU8823KCAqjl9tU5f5fTVnL5aZSa8Yj6Lv8U5WXPCtPwPfOuD8b98Z75k
CitedBy_id crossref_primary_10_1098_rspb_2024_2867
crossref_primary_10_1038_s41597_025_04414_0
crossref_primary_10_1093_bioinformatics_btaa634
crossref_primary_10_1093_molbev_msac044
crossref_primary_10_1093_nar_gkab610
crossref_primary_10_1186_s12864_020_6600_6
crossref_primary_10_1007_s10126_018_9836_2
crossref_primary_10_1101_gr_260174_119
crossref_primary_10_1016_j_nantod_2022_101706
crossref_primary_10_1038_s41586_021_03198_8
crossref_primary_10_1186_s12864_018_5034_x
crossref_primary_10_3389_fpls_2022_804839
crossref_primary_10_7554_eLife_88900_3
crossref_primary_10_1016_j_cryobiol_2024_104855
crossref_primary_10_3390_cells9030779
crossref_primary_10_1186_s12870_020_2284_y
crossref_primary_10_1093_narcan_zcac009
crossref_primary_10_1098_rsos_220810
crossref_primary_10_1007_s11103_024_01519_9
crossref_primary_10_1093_molbev_msx268
crossref_primary_10_1186_s12864_020_06862_x
crossref_primary_10_1038_s41598_018_37412_x
crossref_primary_10_3390_md20060359
crossref_primary_10_1534_g3_120_401408
crossref_primary_10_1038_s41598_022_17300_1
crossref_primary_10_1093_sysbio_syab071
crossref_primary_10_1186_s13071_022_05358_9
crossref_primary_10_1007_s11816_021_00699_w
crossref_primary_10_1038_s41467_019_11136_6
crossref_primary_10_3389_fpls_2020_607893
crossref_primary_10_1111_jipb_13773
crossref_primary_10_1111_tbed_13930
crossref_primary_10_3390_genes11040400
crossref_primary_10_1093_g3journal_jkab132
crossref_primary_10_1093_molbev_msx144
crossref_primary_10_1111_brv_12691
crossref_primary_10_1038_s41597_020_0565_9
crossref_primary_10_3390_genes12070952
crossref_primary_10_1186_s12915_024_01920_2
crossref_primary_10_1111_gbb_12753
crossref_primary_10_3390_genes12070953
crossref_primary_10_1155_2019_7859121
crossref_primary_10_1111_1755_0998_13895
crossref_primary_10_3390_ijms23158444
crossref_primary_10_1093_biolinnean_blad136
crossref_primary_10_1016_j_csbj_2024_05_025
crossref_primary_10_1007_s13127_021_00502_2
crossref_primary_10_1098_rspb_2024_2069
crossref_primary_10_1163_15685381_bja10108
crossref_primary_10_1038_s41598_018_34937_z
crossref_primary_10_1007_s10682_023_10256_2
crossref_primary_10_1016_j_dci_2022_104393
crossref_primary_10_1016_j_ibmb_2024_104165
crossref_primary_10_1071_IS19027
crossref_primary_10_1016_j_margen_2025_101182
crossref_primary_10_1093_nar_gkad339
crossref_primary_10_3389_fphbi_2023_1290382
crossref_primary_10_1186_s12864_019_6177_0
crossref_primary_10_1093_molbev_msaa327
crossref_primary_10_1128_spectrum_01906_24
crossref_primary_10_3390_genes12091423
crossref_primary_10_1038_s41564_022_01175_z
crossref_primary_10_1093_jxb_erae131
crossref_primary_10_1186_s12864_017_3840_1
crossref_primary_10_1016_j_cub_2021_08_008
crossref_primary_10_1002_etc_5893
crossref_primary_10_1073_pnas_2403601121
crossref_primary_10_1111_mec_15570
crossref_primary_10_3390_biology9050104
crossref_primary_10_1016_j_yhbeh_2020_104696
crossref_primary_10_3390_biom10070978
crossref_primary_10_1007_s10499_023_01144_1
crossref_primary_10_1111_evo_14545
crossref_primary_10_3390_toxins12060402
crossref_primary_10_1016_j_ympev_2023_107964
crossref_primary_10_1186_s13104_017_2653_2
crossref_primary_10_1016_j_jarmap_2022_100442
crossref_primary_10_7717_peerj_2617
crossref_primary_10_1093_molbev_msab088
crossref_primary_10_1038_s41598_022_16656_8
crossref_primary_10_1111_1462_2920_15166
crossref_primary_10_1111_nph_19175
crossref_primary_10_18699_VJGB_22_07
crossref_primary_10_1371_journal_pone_0286804
crossref_primary_10_3390_jof6040316
crossref_primary_10_1038_s41467_023_37634_2
crossref_primary_10_1186_s12870_024_05025_4
crossref_primary_10_1016_j_algal_2024_103458
crossref_primary_10_1093_mollus_eyab019
crossref_primary_10_1038_s41564_023_01553_1
crossref_primary_10_1002_ajb2_16350
crossref_primary_10_3390_plants13223149
crossref_primary_10_1101_gr_277070_122
crossref_primary_10_1016_j_ympev_2021_107118
crossref_primary_10_3390_microorganisms9081591
crossref_primary_10_1371_journal_pone_0199070
crossref_primary_10_1111_mec_15439
crossref_primary_10_1111_nph_19320
crossref_primary_10_1093_molbev_msad056
crossref_primary_10_1016_j_toxicon_2018_08_016
crossref_primary_10_1016_j_csbj_2022_07_007
crossref_primary_10_1002_ece3_5646
crossref_primary_10_1016_j_isci_2022_103914
crossref_primary_10_1016_j_ijpara_2018_02_001
crossref_primary_10_3389_fcimb_2022_921136
crossref_primary_10_1093_icb_icy071
crossref_primary_10_1186_s12870_022_03631_8
crossref_primary_10_1371_journal_pgen_1011218
crossref_primary_10_1111_jzs_12546
crossref_primary_10_1016_j_margen_2021_100835
crossref_primary_10_3389_fpls_2021_633979
crossref_primary_10_1016_j_fsi_2024_109431
crossref_primary_10_1016_j_molp_2024_05_012
crossref_primary_10_1186_s40168_024_01915_9
crossref_primary_10_1371_journal_pone_0287524
crossref_primary_10_1038_s41598_020_61284_9
crossref_primary_10_1038_srep45125
crossref_primary_10_1371_journal_pone_0228722
crossref_primary_10_1016_j_ympev_2022_107621
crossref_primary_10_1038_s41598_019_41502_9
crossref_primary_10_1038_s41597_024_03226_y
crossref_primary_10_1016_j_envint_2020_106020
crossref_primary_10_1038_s41598_021_81030_z
crossref_primary_10_1093_bib_bbab563
crossref_primary_10_1186_s12915_020_0741_6
crossref_primary_10_1186_s12864_020_06988_y
crossref_primary_10_3389_fmars_2019_00662
crossref_primary_10_3390_ijms222212228
crossref_primary_10_1016_j_cbd_2021_100904
crossref_primary_10_1093_gigascience_giy132
crossref_primary_10_1534_g3_120_401711
crossref_primary_10_3389_fgene_2021_689406
crossref_primary_10_1093_gbe_evac155
crossref_primary_10_3390_genes10020079
crossref_primary_10_1155_2019_7295859
crossref_primary_10_1371_journal_pone_0259871
crossref_primary_10_1093_gbe_evab063
crossref_primary_10_1098_rsob_230259
crossref_primary_10_1093_bib_bbz058
crossref_primary_10_1093_molbev_msad175
crossref_primary_10_1093_jxb_erz114
crossref_primary_10_1186_s12870_024_04817_y
crossref_primary_10_1093_bioinformatics_bty307
crossref_primary_10_1186_s12864_019_6024_3
crossref_primary_10_1186_s12864_020_07088_7
crossref_primary_10_1371_journal_pone_0302314
crossref_primary_10_3390_ijms22010032
crossref_primary_10_1016_j_aquatox_2021_106069
crossref_primary_10_3389_fevo_2022_1065947
crossref_primary_10_1093_biomethods_bpad013
crossref_primary_10_1016_j_aqrep_2021_100936
crossref_primary_10_1016_j_chom_2024_11_014
crossref_primary_10_1038_s41380_024_02790_4
crossref_primary_10_1038_s41598_021_97295_3
crossref_primary_10_1111_mec_16866
crossref_primary_10_15252_embj_2021109694
crossref_primary_10_1126_sciadv_adj4960
crossref_primary_10_1071_IS21030
crossref_primary_10_1093_gbe_evad212
crossref_primary_10_1016_j_algal_2020_102181
crossref_primary_10_7717_peerj_5428
crossref_primary_10_1038_s41598_022_24694_5
crossref_primary_10_1093_molbev_msad087
crossref_primary_10_1371_journal_pone_0208538
crossref_primary_10_1186_s13227_023_00218_8
crossref_primary_10_1093_g3journal_jkad098
crossref_primary_10_1093_molbev_msz188
crossref_primary_10_1007_s10528_022_10283_8
crossref_primary_10_1098_rsob_240141
crossref_primary_10_1016_j_aspen_2021_04_005
crossref_primary_10_1098_rsob_240022
crossref_primary_10_3390_toxins14050358
crossref_primary_10_3389_fpls_2024_1412189
crossref_primary_10_1093_bioinformatics_btz620
crossref_primary_10_7717_peerj_16456
crossref_primary_10_1007_s11104_023_06275_1
crossref_primary_10_1016_j_ympev_2019_05_023
crossref_primary_10_1016_j_margen_2020_100783
crossref_primary_10_1016_j_jbiotec_2020_11_020
crossref_primary_10_1038_s41467_024_53943_6
crossref_primary_10_1093_gbe_evab042
crossref_primary_10_1093_gigascience_giac021
crossref_primary_10_7554_eLife_63266
crossref_primary_10_1016_j_cris_2020_100006
crossref_primary_10_1016_j_ympev_2024_108115
crossref_primary_10_1111_imb_12553
crossref_primary_10_3389_fgene_2022_1012694
crossref_primary_10_1128_mSphere_00354_17
crossref_primary_10_1186_s12863_024_01237_7
crossref_primary_10_1093_bioinformatics_btaf003
crossref_primary_10_1016_j_dib_2024_110526
crossref_primary_10_1016_j_scitotenv_2020_143008
crossref_primary_10_1016_j_algal_2023_103106
crossref_primary_10_3389_fevo_2021_659360
crossref_primary_10_1111_mec_17371
crossref_primary_10_1111_mec_16164
crossref_primary_10_1016_j_plantsci_2022_111279
crossref_primary_10_1093_molbev_msaf043
crossref_primary_10_1371_journal_pone_0205407
crossref_primary_10_1128_msystems_00284_23
crossref_primary_10_1093_molbev_msy198
crossref_primary_10_1534_genetics_116_194050
crossref_primary_10_1016_j_gene_2020_145189
crossref_primary_10_1093_molbev_msz166
crossref_primary_10_1128_msystems_00506_24
crossref_primary_10_1111_mec_15867
crossref_primary_10_1093_molbev_msaa251
crossref_primary_10_1093_nargab_lqad007
crossref_primary_10_1093_botlinnean_boaf015
crossref_primary_10_3389_fphys_2023_1265879
crossref_primary_10_1038_s41559_022_01712_3
crossref_primary_10_1007_s11692_023_09602_7
crossref_primary_10_1093_sysbio_syae057
crossref_primary_10_1371_journal_pbio_3001365
crossref_primary_10_1007_s10709_024_00210_7
crossref_primary_10_1038_s41467_022_33582_5
crossref_primary_10_3390_ijms25084228
crossref_primary_10_1126_science_aba0803
crossref_primary_10_1007_s00359_024_01706_5
crossref_primary_10_1186_s12870_024_05481_y
crossref_primary_10_3835_plantgenome2018_06_0034
crossref_primary_10_1016_j_envexpbot_2023_105573
crossref_primary_10_1093_nar_gkad1147
crossref_primary_10_1016_j_ympev_2024_108120
crossref_primary_10_1016_j_gene_2020_144765
crossref_primary_10_1038_s41597_023_02776_x
crossref_primary_10_1093_aob_mcae002
crossref_primary_10_1002_pld3_408
crossref_primary_10_3389_fpls_2023_1283292
crossref_primary_10_1093_g3journal_jkac175
crossref_primary_10_1111_cla_12557
crossref_primary_10_1016_j_ympev_2024_108139
crossref_primary_10_1016_j_ympev_2021_107088
crossref_primary_10_1093_dnares_dsab002
crossref_primary_10_3389_fmars_2021_649909
crossref_primary_10_1038_s41598_019_45193_0
crossref_primary_10_1111_cla_12439
crossref_primary_10_3389_fpls_2024_1342739
crossref_primary_10_3390_cells9122700
crossref_primary_10_1016_j_scitotenv_2023_165667
crossref_primary_10_1016_j_dib_2022_108333
crossref_primary_10_1186_s12915_020_00925_x
crossref_primary_10_3389_fpls_2023_1268546
crossref_primary_10_1093_gbe_evaa143
crossref_primary_10_1093_gbe_evab110
crossref_primary_10_1186_s12915_022_01341_z
crossref_primary_10_3390_cells11233727
crossref_primary_10_1134_S0006297924030052
crossref_primary_10_1534_g3_118_200992
crossref_primary_10_1016_j_ympev_2020_106996
crossref_primary_10_1016_j_ympev_2024_108136
crossref_primary_10_1038_s41467_024_54478_6
crossref_primary_10_7554_eLife_88900
crossref_primary_10_1111_jbi_13828
crossref_primary_10_1016_j_cub_2021_05_062
crossref_primary_10_1186_s12864_020_06841_2
crossref_primary_10_1534_g3_119_400734
crossref_primary_10_1186_s12864_020_07287_2
crossref_primary_10_1534_g3_118_200768
crossref_primary_10_3389_fgene_2021_739781
crossref_primary_10_1016_j_dib_2020_106248
crossref_primary_10_1093_molbev_msz151
crossref_primary_10_1093_nar_gkab575
crossref_primary_10_1038_s41598_022_09806_5
crossref_primary_10_3389_fpls_2021_730251
crossref_primary_10_3389_fpls_2023_1103857
crossref_primary_10_1111_nph_17541
crossref_primary_10_1002_bit_28226
crossref_primary_10_1093_bioadv_vbac029
crossref_primary_10_3389_fmicb_2022_840408
crossref_primary_10_1016_j_margen_2024_101084
crossref_primary_10_1186_s12864_024_10553_2
crossref_primary_10_1016_j_ympev_2021_107182
crossref_primary_10_3390_plants11152062
crossref_primary_10_1038_s41467_022_31832_0
crossref_primary_10_3389_fpls_2023_1114579
crossref_primary_10_1186_s12870_022_03515_x
crossref_primary_10_3390_ijms251910784
crossref_primary_10_5808_gi_20051
crossref_primary_10_1111_jpy_13061
crossref_primary_10_1093_g3journal_jkab299
crossref_primary_10_1093_gbe_evad073
crossref_primary_10_1093_g3journal_jkad113
crossref_primary_10_1038_s41597_022_01613_x
crossref_primary_10_7554_eLife_53898
crossref_primary_10_1016_j_ympev_2025_108311
crossref_primary_10_1371_journal_pone_0240435
crossref_primary_10_3390_stresses3010026
crossref_primary_10_1071_IS18007
crossref_primary_10_1016_j_margen_2024_101097
crossref_primary_10_1242_jeb_204149
crossref_primary_10_1016_j_envint_2023_107893
crossref_primary_10_1111_nph_20384
crossref_primary_10_1073_pnas_2409125121
crossref_primary_10_3390_f14020422
crossref_primary_10_3389_fcimb_2021_773357
crossref_primary_10_1098_rspb_2018_2776
crossref_primary_10_1186_s12983_021_00445_6
crossref_primary_10_1371_journal_pgen_1009404
crossref_primary_10_1016_j_ympev_2023_107859
crossref_primary_10_1371_journal_pone_0317044
crossref_primary_10_1111_nph_15357
crossref_primary_10_1016_j_ympev_2023_107855
crossref_primary_10_1098_rstb_2019_0542
crossref_primary_10_1016_j_molimm_2024_09_006
crossref_primary_10_1111_mec_14847
crossref_primary_10_3389_fgene_2024_1385114
crossref_primary_10_3390_jof9010126
crossref_primary_10_1111_afe_12550
crossref_primary_10_1002_ajb2_16449
crossref_primary_10_1111_mec_17552
crossref_primary_10_1186_s12862_019_1410_7
crossref_primary_10_1111_1758_2229_13148
crossref_primary_10_1111_mec_17437
crossref_primary_10_46471_gigabyte_44
crossref_primary_10_1093_sysbio_syaa080
crossref_primary_10_3390_ijms21030944
crossref_primary_10_1073_pnas_2115608119
crossref_primary_10_1093_molbev_msab165
crossref_primary_10_1111_nph_15692
crossref_primary_10_52547_pgr_7_1_8
crossref_primary_10_1093_g3journal_jkae217
crossref_primary_10_1093_bioinformatics_btz102
crossref_primary_10_7554_eLife_23435
crossref_primary_10_1002_ajb2_1056
crossref_primary_10_3390_biology12091199
crossref_primary_10_1093_g3journal_jkac270
crossref_primary_10_1186_s13717_024_00496_7
crossref_primary_10_1016_j_cub_2022_05_049
crossref_primary_10_1016_j_jprot_2022_104559
crossref_primary_10_1093_molbev_msx293
crossref_primary_10_1101_gr_276375_121
crossref_primary_10_1038_s41598_024_58253_x
crossref_primary_10_3390_ijms23052821
crossref_primary_10_1152_ajprenal_00067_2017
Cites_doi 10.1186/gb-2010-11-11-r116
10.1093/nar/gkt215
10.1093/bioinformatics/btp379
10.1093/bioinformatics/btr208
10.1186/1471-2164-14-S1-S7
10.1093/bioinformatics/btt086
10.1186/s13059-014-0509-9
10.1093/bioinformatics/bts690
10.1093/bioinformatics/btv290
10.1093/bioinformatics/btq151
10.1186/gb-2013-14-4-r36
10.1093/bioinformatics/bts094
10.1038/nprot.2013.084
10.1186/1471-2105-9-11
10.1093/bioinformatics/btr285
10.1093/nar/gks666
10.1093/bib/bbs015
10.1101/020123
10.1093/bioinformatics/btr011
10.1093/bioinformatics/btr170
10.1038/nmeth.1923
10.1093/bioinformatics/btq653
10.1093/bioinformatics/btu030
10.1089/cmb.2012.0021
ContentType Journal Article
Copyright Song and Florea. 2015
Copyright BioMed Central 2015
Song and Florea.
Copyright_xml – notice: Song and Florea. 2015
– notice: Copyright BioMed Central 2015
– notice: Song and Florea.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
88I
8AL
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
LK8
M0N
M0S
M1P
M2P
M7P
P5Z
P62
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1186/s13742-015-0089-y
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Computing Database
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Advanced Technologies & Aerospace Database
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Library & Information Science
EISSN 2047-217X
ExternalDocumentID PMC4615873
3979811741
26500767
10_1186_s13742_015_0089_y
10.1186/s13742-015-0089-y
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -A0
0R~
3V.
4.4
53G
5VS
7X7
88E
88I
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAHBH
AAPPN
AAPXW
AAVAP
ABDBF
ABEJV
ABPTD
ABUWG
ABXVV
ACGFS
ACPRK
ACRMQ
ACUHS
ADBBV
ADINQ
ADRAZ
ADUKV
AEGXH
AENZO
AFKRA
AFULF
AHBYD
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
BAWUL
BAYMD
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BTTYL
BVXVI
C24
C6C
CCPQU
DIK
DWQXO
EBS
EJD
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IHR
IHW
INH
INR
IPNFZ
ITC
K6V
K7-
KQ8
KSI
LK8
M0N
M1P
M2P
M48
M7P
M~E
O9-
OK1
P62
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RIG
RNS
ROL
ROX
RPM
RSV
SBL
SOJ
TJX
TOX
UKHRP
AAYXX
ABGNP
AFPKN
AMNDL
CITATION
IGS
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7XB
8AL
8FK
JQ2
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c625t-d2724a3ad00fa13ce0636d95dd8bf30abe5d37e2a26140dda6c22321893be9bc3
IEDL.DBID M48
ISSN 2047-217X
IngestDate Thu Aug 21 18:22:00 EDT 2025
Mon Jul 21 09:42:58 EDT 2025
Fri Jul 25 11:58:51 EDT 2025
Fri Jul 25 11:56:30 EDT 2025
Mon Jul 21 06:02:24 EDT 2025
Tue Jul 01 01:07:49 EDT 2025
Thu Apr 24 23:09:19 EDT 2025
Mon Dec 16 07:45:54 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords RNA-seq
Next-generation sequencing
Error correction
k-mers
Language English
License This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
http://creativecommons.org/licenses/by/4.0
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c625t-d2724a3ad00fa13ce0636d95dd8bf30abe5d37e2a26140dda6c22321893be9bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s13742-015-0089-y
PMID 26500767
PQID 1772174613
PQPubID 2040230
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4615873
proquest_miscellaneous_1727991633
proquest_journals_3131625242
proquest_journals_1772174613
pubmed_primary_26500767
crossref_citationtrail_10_1186_s13742_015_0089_y
crossref_primary_10_1186_s13742_015_0089_y
oup_primary_10_1186_s13742-015-0089-y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-10-19
PublicationDateYYYYMMDD 2015-10-19
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-19
  day: 19
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
– name: London
PublicationTitle Gigascience
PublicationTitleAlternate Gigascience
PublicationYear 2015
Publisher Oxford University Press
BioMed Central
Publisher_xml – sequence: 0
  name: Oxford University Press
– name: Oxford University Press
– name: BioMed Central
References Doring (2024111712170408800_CR16) 2008; 9
Song (2024111712170408800_CR3) 2014; 15
Schröder (2024111712170408800_CR8) 2009; 25
Nikolenko (2024111712170408800_CR23) 2013; 14
Heo (2024111712170408800_CR1) 2014; 30
Bankevich (2024111712170408800_CR22) 2012; 19
Marçais (2024111712170408800_CR14) 2011; 27
MacManes (2024111712170408800_CR13) 2015
Kim (2024111712170408800_CR17) 2013; 14
Li (2024111712170408800_CR2) 2015; 31
Walenz (2024111712170408800_CR19) 2011; 27
Gurevich (2024111712170408800_CR25) 2013; 29
Kelley (2024111712170408800_CR5) 2010; 11
Liu (2024111712170408800_CR7) 2013; 29
Griebel (2024111712170408800_CR15) 2012; 40
Salmela (2024111712170408800_CR11) 2011; 27
2024111712170408800_CR26
Schulz (2024111712170408800_CR18) 2012; 28
Le (2024111712170408800_CR12) 2013; 41
Ilie (2024111712170408800_CR10) 2011; 27
Langmead (2024111712170408800_CR24) 2012; 9
Haas (2024111712170408800_CR21) 2013; 8
Li (2024111712170408800_CR20)
Salmela (2024111712170408800_CR9) 2010; 26
Yang (2024111712170408800_CR4) 2013; 14
Medvedev (2024111712170408800_CR6) 2011; 27
23618408 - Genome Biol. 2013 Apr 25;14(4):R36
18184432 - BMC Bioinformatics. 2008 Jan 09;9:11
23558750 - Nucleic Acids Res. 2013 May 1;41(10):e109
21951053 - J Comput Biol. 2011 Nov;18(11):1693-707
22388286 - Nat Methods. 2012 Mar 04;9(4):357-9
22368243 - Bioinformatics. 2012 Apr 15;28(8):1086-92
23845962 - Nat Protoc. 2013 Aug;8(8):1494-512
23202746 - Bioinformatics. 2013 Feb 1;29(3):308-15
19542152 - Bioinformatics. 2009 Sep 1;25(17):2157-63
22492192 - Brief Bioinform. 2013 Jan;14(1):56-66
20378555 - Bioinformatics. 2010 May 15;26(10):1284-90
21551146 - Bioinformatics. 2011 Jul 1;27(13):1869-70
25398208 - Genome Biol. 2014;15(11):509
21115437 - Bioinformatics. 2011 Feb 1;27(3):295-302
22962361 - Nucleic Acids Res. 2012 Nov 1;40(20):10073-83
23368723 - BMC Genomics. 2013;14 Suppl 1:S7
23422339 - Bioinformatics. 2013 Apr 15;29(8):1072-5
25953801 - Bioinformatics. 2015 Sep 1;31(17):2885-7
21114842 - Genome Biol. 2010;11(11):R116
24451628 - Bioinformatics. 2014 May 15;30(10):1354-62
22506599 - J Comput Biol. 2012 May;19(5):455-77
21471014 - Bioinformatics. 2011 Jun 1;27(11):1455-61
21685062 - Bioinformatics. 2011 Jul 1;27(13):i137-41
21217122 - Bioinformatics. 2011 Mar 15;27(6):764-70
References_xml – ident: 2024111712170408800_CR26
– volume: 11
  start-page: R116
  issue: 11
  year: 2010
  ident: 2024111712170408800_CR5
  article-title: Quake: quality-aware detection and correction of sequencing errors
  publication-title: Genome Biol.
  doi: 10.1186/gb-2010-11-11-r116
– volume: 41
  start-page: e109
  issue: 10
  year: 2013
  ident: 2024111712170408800_CR12
  article-title: Probabilistic error correction for RNA sequencing
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt215
– volume: 25
  start-page: 2157
  issue: 17
  year: 2009
  ident: 2024111712170408800_CR8
  article-title: SHREC: a short-read error correction method
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btp379
– volume: 27
  start-page: i137
  issue: 13
  year: 2011
  ident: 2024111712170408800_CR6
  article-title: Error correction of high-throughput sequencing datasets with non-uniform coverage
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btr208
– volume: 14
  start-page: S7
  issue: S-1
  year: 2013
  ident: 2024111712170408800_CR23
  publication-title: BMC Genomics.
  doi: 10.1186/1471-2164-14-S1-S7
– volume: 29
  start-page: 1072
  issue: 8
  year: 2013
  ident: 2024111712170408800_CR25
  article-title: QUAST: quality assessment tool for genome assemblies
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btt086
– volume: 15
  start-page: 509
  issue: 11
  year: 2014
  ident: 2024111712170408800_CR3
  article-title: Lighter: fast and memory-efficient sequencing error correction without counting
  publication-title: Genome Biol.
  doi: 10.1186/s13059-014-0509-9
– volume: 29
  start-page: 308
  issue: 3
  year: 2013
  ident: 2024111712170408800_CR7
  article-title: Musket: a multistage k-mer spectrum-based error corrector for Illumina sequence data
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/bts690
– volume: 31
  start-page: 2885
  issue: 17
  year: 2015
  ident: 2024111712170408800_CR2
  article-title: BFC: correcting Illumina sequencing errors
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btv290
– volume: 26
  start-page: 1284
  issue: 10
  year: 2010
  ident: 2024111712170408800_CR9
  article-title: Correction of sequencing errors in a mixed set of reads
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btq151
– volume: 14
  start-page: R36
  issue: 4
  year: 2013
  ident: 2024111712170408800_CR17
  article-title: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions
  publication-title: Genome Biol.
  doi: 10.1186/gb-2013-14-4-r36
– volume: 28
  start-page: 1086
  issue: 8
  year: 2012
  ident: 2024111712170408800_CR18
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/bts094
– volume: 8
  start-page: 1494
  year: 2013
  ident: 2024111712170408800_CR21
  article-title: De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis
  publication-title: Nat Protocols.
  doi: 10.1038/nprot.2013.084
– volume: 9
  start-page: 11
  issue: 1
  year: 2008
  ident: 2024111712170408800_CR16
  article-title: SeqAn: An efficient, generic C++ library for sequence analysis
  publication-title: BMC Bioinformatics.
  doi: 10.1186/1471-2105-9-11
– volume: 27
  start-page: 1869
  issue: 13
  year: 2011
  ident: 2024111712170408800_CR19
  article-title: Sim4db and Leaff: utilities for fast batch spliced alignment and sequence indexing
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btr285
– start-page: 1693
  volume-title: J Comput Biol.
  ident: 2024111712170408800_CR20
  article-title: IsoLasso: A LASSO regression approach to RNA-seq based transcriptome assembly
– volume: 40
  start-page: 10073
  issue: 20
  year: 2012
  ident: 2024111712170408800_CR15
  article-title: Modelling and simulating generic RNA-Seq experiments with the flux simulator
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks666
– volume: 14
  start-page: 56
  issue: 1
  year: 2013
  ident: 2024111712170408800_CR4
  article-title: A survey of error-correction methods for next-generation sequencing
  publication-title: Brief Bioinformatics.
  doi: 10.1093/bib/bbs015
– volume-title: bioRxiv.
  year: 2015
  ident: 2024111712170408800_CR13
  article-title: Optimizing error correction of RNAseq reads
  doi: 10.1101/020123
– volume: 27
  start-page: 764
  issue: 6
  year: 2011
  ident: 2024111712170408800_CR14
  article-title: A fast, lock-free approach for efficient parallel counting of occurrences of k-mers
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btr011
– volume: 27
  start-page: 1455
  issue: 11
  year: 2011
  ident: 2024111712170408800_CR11
  article-title: Correcting Errors in Short Reads by Multiple Alignments
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btr170
– volume: 9
  start-page: 357
  issue: 4
  year: 2012
  ident: 2024111712170408800_CR24
  article-title: Fast gapped-read alignment with Bowtie 2
  publication-title: Nat Methods.
  doi: 10.1038/nmeth.1923
– volume: 27
  start-page: 295
  issue: 3
  year: 2011
  ident: 2024111712170408800_CR10
  article-title: HiTEC: accurate error correction in high-throughput sequencing data
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btq653
– volume: 30
  start-page: 1354
  issue: 10
  year: 2014
  ident: 2024111712170408800_CR1
  article-title: BLESS: Bloom-filter-based Error Correction Solution for High-throughput Sequencing Reads
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btu030
– volume: 19
  start-page: 455
  issue: 4
  year: 2012
  ident: 2024111712170408800_CR22
  article-title: SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing
  publication-title: J Comput Biol.
  doi: 10.1089/cmb.2012.0021
– reference: 18184432 - BMC Bioinformatics. 2008 Jan 09;9:11
– reference: 21114842 - Genome Biol. 2010;11(11):R116
– reference: 22388286 - Nat Methods. 2012 Mar 04;9(4):357-9
– reference: 23845962 - Nat Protoc. 2013 Aug;8(8):1494-512
– reference: 21951053 - J Comput Biol. 2011 Nov;18(11):1693-707
– reference: 22368243 - Bioinformatics. 2012 Apr 15;28(8):1086-92
– reference: 25953801 - Bioinformatics. 2015 Sep 1;31(17):2885-7
– reference: 23202746 - Bioinformatics. 2013 Feb 1;29(3):308-15
– reference: 23368723 - BMC Genomics. 2013;14 Suppl 1:S7
– reference: 22506599 - J Comput Biol. 2012 May;19(5):455-77
– reference: 23422339 - Bioinformatics. 2013 Apr 15;29(8):1072-5
– reference: 22492192 - Brief Bioinform. 2013 Jan;14(1):56-66
– reference: 23618408 - Genome Biol. 2013 Apr 25;14(4):R36
– reference: 21115437 - Bioinformatics. 2011 Feb 1;27(3):295-302
– reference: 21685062 - Bioinformatics. 2011 Jul 1;27(13):i137-41
– reference: 24451628 - Bioinformatics. 2014 May 15;30(10):1354-62
– reference: 19542152 - Bioinformatics. 2009 Sep 1;25(17):2157-63
– reference: 23558750 - Nucleic Acids Res. 2013 May 1;41(10):e109
– reference: 20378555 - Bioinformatics. 2010 May 15;26(10):1284-90
– reference: 22962361 - Nucleic Acids Res. 2012 Nov 1;40(20):10073-83
– reference: 25398208 - Genome Biol. 2014;15(11):509
– reference: 21217122 - Bioinformatics. 2011 Mar 15;27(6):764-70
– reference: 21471014 - Bioinformatics. 2011 Jun 1;27(11):1455-61
– reference: 21551146 - Bioinformatics. 2011 Jul 1;27(13):1869-70
SSID ssj0000778873
Score 2.5288012
Snippet Abstract Background Next-generation sequencing of cellular RNA (RNA-seq) is rapidly becoming the cornerstone of transcriptomic analysis. However, sequencing...
Next-generation sequencing of cellular RNA (RNA-seq) is rapidly becoming the cornerstone of transcriptomic analysis. However, sequencing errors in the already...
Background Next-generation sequencing of cellular RNA (RNA-seq) is rapidly becoming the cornerstone of transcriptomic analysis. However, sequencing errors in...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 48
SubjectTerms Alternative splicing
Bioinformatics
Error analysis
Error correction
Error correction & detection
Gene expression
Gene sequencing
Graph theory
Next-generation sequencing
Ribonucleic acid
RNA
RNA - genetics
Sequence Analysis, RNA - methods
Technical Note
Transcriptomics
Whole genome sequencing
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9wwDLc29sLLBIyP8jFl0tgDUkSbtMmFlwlNIDZp94CGdG9VmqQCCfXgevfAf4_dy5W7CXiOa6W2E_-cODbAd4L1yikMSwoXeJ4HxY2pDRfG10GQz-gq3vwdqqub_M-oGMUDtzamVS72xG6j9mNHZ-SnGcJARM_ofX4-PHLqGkW3q7GFxkf4RKXLKKVLj3R_xpJqypWT8TIzG6jTNpMYC2L8XHB0foY_rbijlSduS0jz_4TJJQ90uQGfI3Rk53Ndb8KH0GzBUXx4wH6w-LKIJM3ikv0Cw2tH_TfoaP6Mha5eBHJntvHMOjejQhEsTCbjCYt09DXyYb-pBfJdY9n18Jy34ZEhuvTtNtxcXvz7dcVjDwXuMLKZci-0yK20Pk1rm0kXEJIobwrvB1UtU1uFwksdhEWd5an3VjkEDOj3jayCqZzcgbVm3IQ9YFZJDMaKgagdlQ201ougNOo0RdQlnE0gXYiydLHAOPW5uC-7QGOgyrn0S2RSkvTLpwRO-k8e5tU13iM-Rv28Qbek0gQOFxos44JsyxfzeXVYZjJDeSFeSeBbP4wrja5PbBPGM2IhNKFpiSx25_bQT0Yg0E210gnoFUvpCaiK9-pIc3fbVfPGORVopPvvz_oA1gX9IuXSmENYm05m4Qjh0LT62tn8M8D7BoE
  priority: 102
  providerName: ProQuest
Title Rcorrector: efficient and accurate error correction for Illumina RNA-seq reads
URI https://www.ncbi.nlm.nih.gov/pubmed/26500767
https://www.proquest.com/docview/1772174613
https://www.proquest.com/docview/3131625242
https://www.proquest.com/docview/1727991633
https://pubmed.ncbi.nlm.nih.gov/PMC4615873
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFD708rKXsa27eGuDCtseBtpsyZbswRjtaNYNGkZYIG9GlmRaKM7qJLD8-53jKCEZWWEvfpF8bJ-L9R1dvgPwmmC9sgrTksx6nqZe8aKoCy4KV3tBY0bHeHM1UJej9Ps4G-_BqrxVUOB0Z2pH9aRG7e3733eLzxjwn7qAz9WHaSIxwcOkOOM4ohV8sQ-H-BBNcXoV0H73Y9a0dY7WnEXHT5DocVjn3Clla6TaOv22AUL_3ku5MTj1H8HDgCrZ2dINHsOeb57ASTiTwN6ycOiIjMBCNB_BYGipNAfN2n9kvqOSQOnMNI4Za-fEIcF8205aFvrR3SiHfaPqyDeNYcPBGZ_6O4bA002fwqh_8fPLJQ_lFbjFpGfGndAiNdK4OK5NIq1HtKJckTmXV7WMTeUzJ7UXBs2Zxs4ZZRFLICQoZOWLyspncNBMGv8CmFES87QsF7UlRkFjnPBKo7ljBGTCmgjilSpLG7jHqQTGbdnlILkql9ovUUhJ2i8XEbxb3_JrSbxxX-c3aJ9_9NswaQTHKwuWK1crE0wwMC9DXLOzWSYyQX0hlIngdN2MQUgrK6bxkzmJEJqAtkQRz5f-sH4ZgRg41kpHoLc8Zd2BCL63W5qb647oG98pQ4d9-T-qeAUPBH0wbbopjuFg1s79CeKmWdWDfT3WeM37X3tweH4x-DHsdXMQvS5O_gBolhP2
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAL4k2gLUaiHJCsJnZibypVqAKqXdruoWqlvQXHdkQllG03u0L7p_iNzOTVXQS99WxnZM-M_X0T2zMA74nWK6swLEms53HsFU_TIuUidYUXhBl1xpvTsRpexN8myWQDfndvYehaZbcn1hu1m1r6R74XIQ1E9ozo8-nqmlPVKDpd7UpoNG5x7Je_MGSrDkZf0L67Qhx9Pf885G1VAW6R68-5E1rERhoXhoWJpPUI0sqliXODvJChyX3ipPbC4Czi0DmjLEIoImEqc5_mVqLce3AfgTekFaUnuv-nE2q6myfbw9NooPaqSGLsifF6whFsU75cg7-1J3UrzPbvC5oriHf0GB61VJUdNr71BDZ8-RS224cO7ANrXzKRZVm7RTyD8Zmleh90FLDPfJ2fAqUzUzpmrF1QYgrmZ7PpjLX96GuUw0ZUcvmyNOxsfMgrf82QzbrqOVzciXZfwGY5Lf0rYEZJDP6SgSgspSk0xgmvNPpQiCxPWBNA2Kkys21Cc6qr8TOrA5uByhrtZygkI-1nywA-9p9cNdk8buu8i_b5T78Vkwaw1VkwazeAKrtx1382y0hGqC_kRwG865txZdNxjSn9dEEihCb2LlHEy8Yf-sEIJNahVjoAveYpfQfKGr7eUl7-qLOH45gSdNLXt4_6LTwYnp-eZCej8fEbeChounSPJ92Czfls4beRis3zndr_GXy_6wX3B7f3Q_g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rcorrector%3A+efficient+and+accurate+error+correction+for+Illumina+RNA-seq+reads&rft.jtitle=Gigascience&rft.au=Song%2C+Li&rft.au=Florea%2C+Liliana&rft.date=2015-10-19&rft.issn=2047-217X&rft.eissn=2047-217X&rft.volume=4&rft.issue=1&rft_id=info:doi/10.1186%2Fs13742-015-0089-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13742_015_0089_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-217X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-217X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-217X&client=summon