Rcorrector: efficient and accurate error correction for Illumina RNA-seq reads
Abstract Background Next-generation sequencing of cellular RNA (RNA-seq) is rapidly becoming the cornerstone of transcriptomic analysis. However, sequencing errors in the already short RNA-seq reads complicate bioinformatics analyses, in particular alignment and assembly. Error correction methods ha...
Saved in:
Published in | Gigascience Vol. 4; no. 1; p. 48 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Oxford University Press
19.10.2015
BioMed Central |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Background
Next-generation sequencing of cellular RNA (RNA-seq) is rapidly becoming the cornerstone of transcriptomic analysis. However, sequencing errors in the already short RNA-seq reads complicate bioinformatics analyses, in particular alignment and assembly. Error correction methods have been highly effective for whole-genome sequencing (WGS) reads, but are unsuitable for RNA-seq reads, owing to the variation in gene expression levels and alternative splicing.
Findings
We developed a k-mer based method, Rcorrector, to correct random sequencing errors in Illumina RNA-seq reads. Rcorrector uses a De Bruijn graph to compactly represent all trusted k-mers in the input reads. Unlike WGS read correctors, which use a global threshold to determine trusted k-mers, Rcorrector computes a local threshold at every position in a read.
Conclusions
Rcorrector has an accuracy higher than or comparable to existing methods, including the only other method (SEECER) designed for RNA-seq reads, and is more time and memory efficient. With a 5 GB memory footprint for 100 million reads, it can be run on virtually any desktop or server. The software is available free of charge under the GNU General Public License from https://github.com/mourisl/Rcorrector/. |
---|---|
AbstractList | Next-generation sequencing of cellular RNA (RNA-seq) is rapidly becoming the cornerstone of transcriptomic analysis. However, sequencing errors in the already short RNA-seq reads complicate bioinformatics analyses, in particular alignment and assembly. Error correction methods have been highly effective for whole-genome sequencing (WGS) reads, but are unsuitable for RNA-seq reads, owing to the variation in gene expression levels and alternative splicing.
We developed a k-mer based method, Rcorrector, to correct random sequencing errors in Illumina RNA-seq reads. Rcorrector uses a De Bruijn graph to compactly represent all trusted k-mers in the input reads. Unlike WGS read correctors, which use a global threshold to determine trusted k-mers, Rcorrector computes a local threshold at every position in a read.
Rcorrector has an accuracy higher than or comparable to existing methods, including the only other method (SEECER) designed for RNA-seq reads, and is more time and memory efficient. With a 5 GB memory footprint for 100 million reads, it can be run on virtually any desktop or server. The software is available free of charge under the GNU General Public License from https://github.com/mourisl/Rcorrector/. Background Next-generation sequencing of cellular RNA (RNA-seq) is rapidly becoming the cornerstone of transcriptomic analysis. However, sequencing errors in the already short RNA-seq reads complicate bioinformatics analyses, in particular alignment and assembly. Error correction methods have been highly effective for whole-genome sequencing (WGS) reads, but are unsuitable for RNA-seq reads, owing to the variation in gene expression levels and alternative splicing. Findings We developed a k-mer based method, Rcorrector, to correct random sequencing errors in Illumina RNA-seq reads. Rcorrector uses a De Bruijn graph to compactly represent all trusted k-mers in the input reads. Unlike WGS read correctors, which use a global threshold to determine trusted k-mers, Rcorrector computes a local threshold at every position in a read. Conclusions Rcorrector has an accuracy higher than or comparable to existing methods, including the only other method (SEECER) designed for RNA-seq reads, and is more time and memory efficient. With a 5 GB memory footprint for 100 million reads, it can be run on virtually any desktop or server. The software is available free of charge under the GNU General Public License from https://github.com/mourisl/Rcorrector/. Next-generation sequencing of cellular RNA (RNA-seq) is rapidly becoming the cornerstone of transcriptomic analysis. However, sequencing errors in the already short RNA-seq reads complicate bioinformatics analyses, in particular alignment and assembly. Error correction methods have been highly effective for whole-genome sequencing (WGS) reads, but are unsuitable for RNA-seq reads, owing to the variation in gene expression levels and alternative splicing.BACKGROUNDNext-generation sequencing of cellular RNA (RNA-seq) is rapidly becoming the cornerstone of transcriptomic analysis. However, sequencing errors in the already short RNA-seq reads complicate bioinformatics analyses, in particular alignment and assembly. Error correction methods have been highly effective for whole-genome sequencing (WGS) reads, but are unsuitable for RNA-seq reads, owing to the variation in gene expression levels and alternative splicing.We developed a k-mer based method, Rcorrector, to correct random sequencing errors in Illumina RNA-seq reads. Rcorrector uses a De Bruijn graph to compactly represent all trusted k-mers in the input reads. Unlike WGS read correctors, which use a global threshold to determine trusted k-mers, Rcorrector computes a local threshold at every position in a read.FINDINGSWe developed a k-mer based method, Rcorrector, to correct random sequencing errors in Illumina RNA-seq reads. Rcorrector uses a De Bruijn graph to compactly represent all trusted k-mers in the input reads. Unlike WGS read correctors, which use a global threshold to determine trusted k-mers, Rcorrector computes a local threshold at every position in a read.Rcorrector has an accuracy higher than or comparable to existing methods, including the only other method (SEECER) designed for RNA-seq reads, and is more time and memory efficient. With a 5 GB memory footprint for 100 million reads, it can be run on virtually any desktop or server. The software is available free of charge under the GNU General Public License from https://github.com/mourisl/Rcorrector/.CONCLUSIONSRcorrector has an accuracy higher than or comparable to existing methods, including the only other method (SEECER) designed for RNA-seq reads, and is more time and memory efficient. With a 5 GB memory footprint for 100 million reads, it can be run on virtually any desktop or server. The software is available free of charge under the GNU General Public License from https://github.com/mourisl/Rcorrector/. Abstract Background Next-generation sequencing of cellular RNA (RNA-seq) is rapidly becoming the cornerstone of transcriptomic analysis. However, sequencing errors in the already short RNA-seq reads complicate bioinformatics analyses, in particular alignment and assembly. Error correction methods have been highly effective for whole-genome sequencing (WGS) reads, but are unsuitable for RNA-seq reads, owing to the variation in gene expression levels and alternative splicing. Findings We developed a k-mer based method, Rcorrector, to correct random sequencing errors in Illumina RNA-seq reads. Rcorrector uses a De Bruijn graph to compactly represent all trusted k-mers in the input reads. Unlike WGS read correctors, which use a global threshold to determine trusted k-mers, Rcorrector computes a local threshold at every position in a read. Conclusions Rcorrector has an accuracy higher than or comparable to existing methods, including the only other method (SEECER) designed for RNA-seq reads, and is more time and memory efficient. With a 5 GB memory footprint for 100 million reads, it can be run on virtually any desktop or server. The software is available free of charge under the GNU General Public License from https://github.com/mourisl/Rcorrector/. |
Author | Song, Li Florea, Liliana |
Author_xml | – sequence: 1 givenname: Li surname: Song fullname: Song, Li organization: Department of Computer Science, Johns Hopkins University, 21218 Baltimore, USA – sequence: 2 givenname: Liliana surname: Florea fullname: Florea, Liliana email: florea@jhu.edu organization: Department of Computer Science, Johns Hopkins University, 21218 Baltimore, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26500767$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1r3DAUFCWl-Wh-QC_FkEsOcasn2ZKdQyCE5gNCCqGF3oQsPbcKXmkj2YH995XZTdkEGl2kh2ZGb95on-z44JGQT0C_ADTiawIuK1ZSqEtKm7ZcvSN7jFayZCB_7Wydd8lhSg80LymbRvIPZJeJOldC7pG7exNiRDOGeFpg3zvj0I-F9rbQxkxRj1hgjCEWG5wLvuhzeTMM08J5XdzfnZcJH4uI2qaP5H2vh4SHm_2A_Lz89uPiurz9fnVzcX5bGsHqsbRMskpzbSntNXCDVHBh29rapus51R3WlktkmgmoqLVaGMY4g6blHbad4QfkbK27nLoFWpN7jnpQy-gWOq5U0E69vPHuj_odnlQloM4zyALHG4EYHidMo1q4ZHAYtMcwJQWSybYFwWfo0SvoQ5iiz_YUBw7ZEKvYWyiQMueQX561Pm_3_a_h50AyQK4BJoaUIvbKuFHPU8823KCAqjl9tU5f5fTVnL5aZSa8Yj6Lv8U5WXPCtPwPfOuD8b98Z75k |
CitedBy_id | crossref_primary_10_1098_rspb_2024_2867 crossref_primary_10_1038_s41597_025_04414_0 crossref_primary_10_1093_bioinformatics_btaa634 crossref_primary_10_1093_molbev_msac044 crossref_primary_10_1093_nar_gkab610 crossref_primary_10_1186_s12864_020_6600_6 crossref_primary_10_1007_s10126_018_9836_2 crossref_primary_10_1101_gr_260174_119 crossref_primary_10_1016_j_nantod_2022_101706 crossref_primary_10_1038_s41586_021_03198_8 crossref_primary_10_1186_s12864_018_5034_x crossref_primary_10_3389_fpls_2022_804839 crossref_primary_10_7554_eLife_88900_3 crossref_primary_10_1016_j_cryobiol_2024_104855 crossref_primary_10_3390_cells9030779 crossref_primary_10_1186_s12870_020_2284_y crossref_primary_10_1093_narcan_zcac009 crossref_primary_10_1098_rsos_220810 crossref_primary_10_1007_s11103_024_01519_9 crossref_primary_10_1093_molbev_msx268 crossref_primary_10_1186_s12864_020_06862_x crossref_primary_10_1038_s41598_018_37412_x crossref_primary_10_3390_md20060359 crossref_primary_10_1534_g3_120_401408 crossref_primary_10_1038_s41598_022_17300_1 crossref_primary_10_1093_sysbio_syab071 crossref_primary_10_1186_s13071_022_05358_9 crossref_primary_10_1007_s11816_021_00699_w crossref_primary_10_1038_s41467_019_11136_6 crossref_primary_10_3389_fpls_2020_607893 crossref_primary_10_1111_jipb_13773 crossref_primary_10_1111_tbed_13930 crossref_primary_10_3390_genes11040400 crossref_primary_10_1093_g3journal_jkab132 crossref_primary_10_1093_molbev_msx144 crossref_primary_10_1111_brv_12691 crossref_primary_10_1038_s41597_020_0565_9 crossref_primary_10_3390_genes12070952 crossref_primary_10_1186_s12915_024_01920_2 crossref_primary_10_1111_gbb_12753 crossref_primary_10_3390_genes12070953 crossref_primary_10_1155_2019_7859121 crossref_primary_10_1111_1755_0998_13895 crossref_primary_10_3390_ijms23158444 crossref_primary_10_1093_biolinnean_blad136 crossref_primary_10_1016_j_csbj_2024_05_025 crossref_primary_10_1007_s13127_021_00502_2 crossref_primary_10_1098_rspb_2024_2069 crossref_primary_10_1163_15685381_bja10108 crossref_primary_10_1038_s41598_018_34937_z crossref_primary_10_1007_s10682_023_10256_2 crossref_primary_10_1016_j_dci_2022_104393 crossref_primary_10_1016_j_ibmb_2024_104165 crossref_primary_10_1071_IS19027 crossref_primary_10_1016_j_margen_2025_101182 crossref_primary_10_1093_nar_gkad339 crossref_primary_10_3389_fphbi_2023_1290382 crossref_primary_10_1186_s12864_019_6177_0 crossref_primary_10_1093_molbev_msaa327 crossref_primary_10_1128_spectrum_01906_24 crossref_primary_10_3390_genes12091423 crossref_primary_10_1038_s41564_022_01175_z crossref_primary_10_1093_jxb_erae131 crossref_primary_10_1186_s12864_017_3840_1 crossref_primary_10_1016_j_cub_2021_08_008 crossref_primary_10_1002_etc_5893 crossref_primary_10_1073_pnas_2403601121 crossref_primary_10_1111_mec_15570 crossref_primary_10_3390_biology9050104 crossref_primary_10_1016_j_yhbeh_2020_104696 crossref_primary_10_3390_biom10070978 crossref_primary_10_1007_s10499_023_01144_1 crossref_primary_10_1111_evo_14545 crossref_primary_10_3390_toxins12060402 crossref_primary_10_1016_j_ympev_2023_107964 crossref_primary_10_1186_s13104_017_2653_2 crossref_primary_10_1016_j_jarmap_2022_100442 crossref_primary_10_7717_peerj_2617 crossref_primary_10_1093_molbev_msab088 crossref_primary_10_1038_s41598_022_16656_8 crossref_primary_10_1111_1462_2920_15166 crossref_primary_10_1111_nph_19175 crossref_primary_10_18699_VJGB_22_07 crossref_primary_10_1371_journal_pone_0286804 crossref_primary_10_3390_jof6040316 crossref_primary_10_1038_s41467_023_37634_2 crossref_primary_10_1186_s12870_024_05025_4 crossref_primary_10_1016_j_algal_2024_103458 crossref_primary_10_1093_mollus_eyab019 crossref_primary_10_1038_s41564_023_01553_1 crossref_primary_10_1002_ajb2_16350 crossref_primary_10_3390_plants13223149 crossref_primary_10_1101_gr_277070_122 crossref_primary_10_1016_j_ympev_2021_107118 crossref_primary_10_3390_microorganisms9081591 crossref_primary_10_1371_journal_pone_0199070 crossref_primary_10_1111_mec_15439 crossref_primary_10_1111_nph_19320 crossref_primary_10_1093_molbev_msad056 crossref_primary_10_1016_j_toxicon_2018_08_016 crossref_primary_10_1016_j_csbj_2022_07_007 crossref_primary_10_1002_ece3_5646 crossref_primary_10_1016_j_isci_2022_103914 crossref_primary_10_1016_j_ijpara_2018_02_001 crossref_primary_10_3389_fcimb_2022_921136 crossref_primary_10_1093_icb_icy071 crossref_primary_10_1186_s12870_022_03631_8 crossref_primary_10_1371_journal_pgen_1011218 crossref_primary_10_1111_jzs_12546 crossref_primary_10_1016_j_margen_2021_100835 crossref_primary_10_3389_fpls_2021_633979 crossref_primary_10_1016_j_fsi_2024_109431 crossref_primary_10_1016_j_molp_2024_05_012 crossref_primary_10_1186_s40168_024_01915_9 crossref_primary_10_1371_journal_pone_0287524 crossref_primary_10_1038_s41598_020_61284_9 crossref_primary_10_1038_srep45125 crossref_primary_10_1371_journal_pone_0228722 crossref_primary_10_1016_j_ympev_2022_107621 crossref_primary_10_1038_s41598_019_41502_9 crossref_primary_10_1038_s41597_024_03226_y crossref_primary_10_1016_j_envint_2020_106020 crossref_primary_10_1038_s41598_021_81030_z crossref_primary_10_1093_bib_bbab563 crossref_primary_10_1186_s12915_020_0741_6 crossref_primary_10_1186_s12864_020_06988_y crossref_primary_10_3389_fmars_2019_00662 crossref_primary_10_3390_ijms222212228 crossref_primary_10_1016_j_cbd_2021_100904 crossref_primary_10_1093_gigascience_giy132 crossref_primary_10_1534_g3_120_401711 crossref_primary_10_3389_fgene_2021_689406 crossref_primary_10_1093_gbe_evac155 crossref_primary_10_3390_genes10020079 crossref_primary_10_1155_2019_7295859 crossref_primary_10_1371_journal_pone_0259871 crossref_primary_10_1093_gbe_evab063 crossref_primary_10_1098_rsob_230259 crossref_primary_10_1093_bib_bbz058 crossref_primary_10_1093_molbev_msad175 crossref_primary_10_1093_jxb_erz114 crossref_primary_10_1186_s12870_024_04817_y crossref_primary_10_1093_bioinformatics_bty307 crossref_primary_10_1186_s12864_019_6024_3 crossref_primary_10_1186_s12864_020_07088_7 crossref_primary_10_1371_journal_pone_0302314 crossref_primary_10_3390_ijms22010032 crossref_primary_10_1016_j_aquatox_2021_106069 crossref_primary_10_3389_fevo_2022_1065947 crossref_primary_10_1093_biomethods_bpad013 crossref_primary_10_1016_j_aqrep_2021_100936 crossref_primary_10_1016_j_chom_2024_11_014 crossref_primary_10_1038_s41380_024_02790_4 crossref_primary_10_1038_s41598_021_97295_3 crossref_primary_10_1111_mec_16866 crossref_primary_10_15252_embj_2021109694 crossref_primary_10_1126_sciadv_adj4960 crossref_primary_10_1071_IS21030 crossref_primary_10_1093_gbe_evad212 crossref_primary_10_1016_j_algal_2020_102181 crossref_primary_10_7717_peerj_5428 crossref_primary_10_1038_s41598_022_24694_5 crossref_primary_10_1093_molbev_msad087 crossref_primary_10_1371_journal_pone_0208538 crossref_primary_10_1186_s13227_023_00218_8 crossref_primary_10_1093_g3journal_jkad098 crossref_primary_10_1093_molbev_msz188 crossref_primary_10_1007_s10528_022_10283_8 crossref_primary_10_1098_rsob_240141 crossref_primary_10_1016_j_aspen_2021_04_005 crossref_primary_10_1098_rsob_240022 crossref_primary_10_3390_toxins14050358 crossref_primary_10_3389_fpls_2024_1412189 crossref_primary_10_1093_bioinformatics_btz620 crossref_primary_10_7717_peerj_16456 crossref_primary_10_1007_s11104_023_06275_1 crossref_primary_10_1016_j_ympev_2019_05_023 crossref_primary_10_1016_j_margen_2020_100783 crossref_primary_10_1016_j_jbiotec_2020_11_020 crossref_primary_10_1038_s41467_024_53943_6 crossref_primary_10_1093_gbe_evab042 crossref_primary_10_1093_gigascience_giac021 crossref_primary_10_7554_eLife_63266 crossref_primary_10_1016_j_cris_2020_100006 crossref_primary_10_1016_j_ympev_2024_108115 crossref_primary_10_1111_imb_12553 crossref_primary_10_3389_fgene_2022_1012694 crossref_primary_10_1128_mSphere_00354_17 crossref_primary_10_1186_s12863_024_01237_7 crossref_primary_10_1093_bioinformatics_btaf003 crossref_primary_10_1016_j_dib_2024_110526 crossref_primary_10_1016_j_scitotenv_2020_143008 crossref_primary_10_1016_j_algal_2023_103106 crossref_primary_10_3389_fevo_2021_659360 crossref_primary_10_1111_mec_17371 crossref_primary_10_1111_mec_16164 crossref_primary_10_1016_j_plantsci_2022_111279 crossref_primary_10_1093_molbev_msaf043 crossref_primary_10_1371_journal_pone_0205407 crossref_primary_10_1128_msystems_00284_23 crossref_primary_10_1093_molbev_msy198 crossref_primary_10_1534_genetics_116_194050 crossref_primary_10_1016_j_gene_2020_145189 crossref_primary_10_1093_molbev_msz166 crossref_primary_10_1128_msystems_00506_24 crossref_primary_10_1111_mec_15867 crossref_primary_10_1093_molbev_msaa251 crossref_primary_10_1093_nargab_lqad007 crossref_primary_10_1093_botlinnean_boaf015 crossref_primary_10_3389_fphys_2023_1265879 crossref_primary_10_1038_s41559_022_01712_3 crossref_primary_10_1007_s11692_023_09602_7 crossref_primary_10_1093_sysbio_syae057 crossref_primary_10_1371_journal_pbio_3001365 crossref_primary_10_1007_s10709_024_00210_7 crossref_primary_10_1038_s41467_022_33582_5 crossref_primary_10_3390_ijms25084228 crossref_primary_10_1126_science_aba0803 crossref_primary_10_1007_s00359_024_01706_5 crossref_primary_10_1186_s12870_024_05481_y crossref_primary_10_3835_plantgenome2018_06_0034 crossref_primary_10_1016_j_envexpbot_2023_105573 crossref_primary_10_1093_nar_gkad1147 crossref_primary_10_1016_j_ympev_2024_108120 crossref_primary_10_1016_j_gene_2020_144765 crossref_primary_10_1038_s41597_023_02776_x crossref_primary_10_1093_aob_mcae002 crossref_primary_10_1002_pld3_408 crossref_primary_10_3389_fpls_2023_1283292 crossref_primary_10_1093_g3journal_jkac175 crossref_primary_10_1111_cla_12557 crossref_primary_10_1016_j_ympev_2024_108139 crossref_primary_10_1016_j_ympev_2021_107088 crossref_primary_10_1093_dnares_dsab002 crossref_primary_10_3389_fmars_2021_649909 crossref_primary_10_1038_s41598_019_45193_0 crossref_primary_10_1111_cla_12439 crossref_primary_10_3389_fpls_2024_1342739 crossref_primary_10_3390_cells9122700 crossref_primary_10_1016_j_scitotenv_2023_165667 crossref_primary_10_1016_j_dib_2022_108333 crossref_primary_10_1186_s12915_020_00925_x crossref_primary_10_3389_fpls_2023_1268546 crossref_primary_10_1093_gbe_evaa143 crossref_primary_10_1093_gbe_evab110 crossref_primary_10_1186_s12915_022_01341_z crossref_primary_10_3390_cells11233727 crossref_primary_10_1134_S0006297924030052 crossref_primary_10_1534_g3_118_200992 crossref_primary_10_1016_j_ympev_2020_106996 crossref_primary_10_1016_j_ympev_2024_108136 crossref_primary_10_1038_s41467_024_54478_6 crossref_primary_10_7554_eLife_88900 crossref_primary_10_1111_jbi_13828 crossref_primary_10_1016_j_cub_2021_05_062 crossref_primary_10_1186_s12864_020_06841_2 crossref_primary_10_1534_g3_119_400734 crossref_primary_10_1186_s12864_020_07287_2 crossref_primary_10_1534_g3_118_200768 crossref_primary_10_3389_fgene_2021_739781 crossref_primary_10_1016_j_dib_2020_106248 crossref_primary_10_1093_molbev_msz151 crossref_primary_10_1093_nar_gkab575 crossref_primary_10_1038_s41598_022_09806_5 crossref_primary_10_3389_fpls_2021_730251 crossref_primary_10_3389_fpls_2023_1103857 crossref_primary_10_1111_nph_17541 crossref_primary_10_1002_bit_28226 crossref_primary_10_1093_bioadv_vbac029 crossref_primary_10_3389_fmicb_2022_840408 crossref_primary_10_1016_j_margen_2024_101084 crossref_primary_10_1186_s12864_024_10553_2 crossref_primary_10_1016_j_ympev_2021_107182 crossref_primary_10_3390_plants11152062 crossref_primary_10_1038_s41467_022_31832_0 crossref_primary_10_3389_fpls_2023_1114579 crossref_primary_10_1186_s12870_022_03515_x crossref_primary_10_3390_ijms251910784 crossref_primary_10_5808_gi_20051 crossref_primary_10_1111_jpy_13061 crossref_primary_10_1093_g3journal_jkab299 crossref_primary_10_1093_gbe_evad073 crossref_primary_10_1093_g3journal_jkad113 crossref_primary_10_1038_s41597_022_01613_x crossref_primary_10_7554_eLife_53898 crossref_primary_10_1016_j_ympev_2025_108311 crossref_primary_10_1371_journal_pone_0240435 crossref_primary_10_3390_stresses3010026 crossref_primary_10_1071_IS18007 crossref_primary_10_1016_j_margen_2024_101097 crossref_primary_10_1242_jeb_204149 crossref_primary_10_1016_j_envint_2023_107893 crossref_primary_10_1111_nph_20384 crossref_primary_10_1073_pnas_2409125121 crossref_primary_10_3390_f14020422 crossref_primary_10_3389_fcimb_2021_773357 crossref_primary_10_1098_rspb_2018_2776 crossref_primary_10_1186_s12983_021_00445_6 crossref_primary_10_1371_journal_pgen_1009404 crossref_primary_10_1016_j_ympev_2023_107859 crossref_primary_10_1371_journal_pone_0317044 crossref_primary_10_1111_nph_15357 crossref_primary_10_1016_j_ympev_2023_107855 crossref_primary_10_1098_rstb_2019_0542 crossref_primary_10_1016_j_molimm_2024_09_006 crossref_primary_10_1111_mec_14847 crossref_primary_10_3389_fgene_2024_1385114 crossref_primary_10_3390_jof9010126 crossref_primary_10_1111_afe_12550 crossref_primary_10_1002_ajb2_16449 crossref_primary_10_1111_mec_17552 crossref_primary_10_1186_s12862_019_1410_7 crossref_primary_10_1111_1758_2229_13148 crossref_primary_10_1111_mec_17437 crossref_primary_10_46471_gigabyte_44 crossref_primary_10_1093_sysbio_syaa080 crossref_primary_10_3390_ijms21030944 crossref_primary_10_1073_pnas_2115608119 crossref_primary_10_1093_molbev_msab165 crossref_primary_10_1111_nph_15692 crossref_primary_10_52547_pgr_7_1_8 crossref_primary_10_1093_g3journal_jkae217 crossref_primary_10_1093_bioinformatics_btz102 crossref_primary_10_7554_eLife_23435 crossref_primary_10_1002_ajb2_1056 crossref_primary_10_3390_biology12091199 crossref_primary_10_1093_g3journal_jkac270 crossref_primary_10_1186_s13717_024_00496_7 crossref_primary_10_1016_j_cub_2022_05_049 crossref_primary_10_1016_j_jprot_2022_104559 crossref_primary_10_1093_molbev_msx293 crossref_primary_10_1101_gr_276375_121 crossref_primary_10_1038_s41598_024_58253_x crossref_primary_10_3390_ijms23052821 crossref_primary_10_1152_ajprenal_00067_2017 |
Cites_doi | 10.1186/gb-2010-11-11-r116 10.1093/nar/gkt215 10.1093/bioinformatics/btp379 10.1093/bioinformatics/btr208 10.1186/1471-2164-14-S1-S7 10.1093/bioinformatics/btt086 10.1186/s13059-014-0509-9 10.1093/bioinformatics/bts690 10.1093/bioinformatics/btv290 10.1093/bioinformatics/btq151 10.1186/gb-2013-14-4-r36 10.1093/bioinformatics/bts094 10.1038/nprot.2013.084 10.1186/1471-2105-9-11 10.1093/bioinformatics/btr285 10.1093/nar/gks666 10.1093/bib/bbs015 10.1101/020123 10.1093/bioinformatics/btr011 10.1093/bioinformatics/btr170 10.1038/nmeth.1923 10.1093/bioinformatics/btq653 10.1093/bioinformatics/btu030 10.1089/cmb.2012.0021 |
ContentType | Journal Article |
Copyright | Song and Florea. 2015 Copyright BioMed Central 2015 Song and Florea. |
Copyright_xml | – notice: Song and Florea. 2015 – notice: Copyright BioMed Central 2015 – notice: Song and Florea. |
DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 88I 8AL 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. LK8 M0N M0S M1P M2P M7P P5Z P62 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1186/s13742-015-0089-y |
DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Biological Sciences Computing Database ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Advanced Technologies & Aerospace Database ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Library & Information Science |
EISSN | 2047-217X |
ExternalDocumentID | PMC4615873 3979811741 26500767 10_1186_s13742_015_0089_y 10.1186/s13742-015-0089-y |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | -A0 0R~ 3V. 4.4 53G 5VS 7X7 88E 88I 8FE 8FG 8FH 8FI 8FJ AAFWJ AAHBH AAPPN AAPXW AAVAP ABDBF ABEJV ABPTD ABUWG ABXVV ACGFS ACPRK ACRMQ ACUHS ADBBV ADINQ ADRAZ ADUKV AEGXH AENZO AFKRA AFULF AHBYD AHSBF AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC BAWUL BAYMD BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BTTYL BVXVI C24 C6C CCPQU DIK DWQXO EBS EJD FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IHR IHW INH INR IPNFZ ITC K6V K7- KQ8 KSI LK8 M0N M1P M2P M48 M7P M~E O9- OK1 P62 PIMPY PQQKQ PROAC PSQYO RBZ RIG RNS ROL ROX RPM RSV SBL SOJ TJX TOX UKHRP AAYXX ABGNP AFPKN AMNDL CITATION IGS PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7XB 8AL 8FK JQ2 K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c625t-d2724a3ad00fa13ce0636d95dd8bf30abe5d37e2a26140dda6c22321893be9bc3 |
IEDL.DBID | M48 |
ISSN | 2047-217X |
IngestDate | Thu Aug 21 18:22:00 EDT 2025 Mon Jul 21 09:42:58 EDT 2025 Fri Jul 25 11:58:51 EDT 2025 Fri Jul 25 11:56:30 EDT 2025 Mon Jul 21 06:02:24 EDT 2025 Tue Jul 01 01:07:49 EDT 2025 Thu Apr 24 23:09:19 EDT 2025 Mon Dec 16 07:45:54 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | RNA-seq Next-generation sequencing Error correction k-mers |
Language | English |
License | This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. http://creativecommons.org/licenses/by/4.0 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c625t-d2724a3ad00fa13ce0636d95dd8bf30abe5d37e2a26140dda6c22321893be9bc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s13742-015-0089-y |
PMID | 26500767 |
PQID | 1772174613 |
PQPubID | 2040230 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4615873 proquest_miscellaneous_1727991633 proquest_journals_3131625242 proquest_journals_1772174613 pubmed_primary_26500767 crossref_citationtrail_10_1186_s13742_015_0089_y crossref_primary_10_1186_s13742_015_0089_y oup_primary_10_1186_s13742-015-0089-y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-10-19 |
PublicationDateYYYYMMDD | 2015-10-19 |
PublicationDate_xml | – month: 10 year: 2015 text: 2015-10-19 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford – name: London |
PublicationTitle | Gigascience |
PublicationTitleAlternate | Gigascience |
PublicationYear | 2015 |
Publisher | Oxford University Press BioMed Central |
Publisher_xml | – sequence: 0 name: Oxford University Press – name: Oxford University Press – name: BioMed Central |
References | Doring (2024111712170408800_CR16) 2008; 9 Song (2024111712170408800_CR3) 2014; 15 Schröder (2024111712170408800_CR8) 2009; 25 Nikolenko (2024111712170408800_CR23) 2013; 14 Heo (2024111712170408800_CR1) 2014; 30 Bankevich (2024111712170408800_CR22) 2012; 19 Marçais (2024111712170408800_CR14) 2011; 27 MacManes (2024111712170408800_CR13) 2015 Kim (2024111712170408800_CR17) 2013; 14 Li (2024111712170408800_CR2) 2015; 31 Walenz (2024111712170408800_CR19) 2011; 27 Gurevich (2024111712170408800_CR25) 2013; 29 Kelley (2024111712170408800_CR5) 2010; 11 Liu (2024111712170408800_CR7) 2013; 29 Griebel (2024111712170408800_CR15) 2012; 40 Salmela (2024111712170408800_CR11) 2011; 27 2024111712170408800_CR26 Schulz (2024111712170408800_CR18) 2012; 28 Le (2024111712170408800_CR12) 2013; 41 Ilie (2024111712170408800_CR10) 2011; 27 Langmead (2024111712170408800_CR24) 2012; 9 Haas (2024111712170408800_CR21) 2013; 8 Li (2024111712170408800_CR20) Salmela (2024111712170408800_CR9) 2010; 26 Yang (2024111712170408800_CR4) 2013; 14 Medvedev (2024111712170408800_CR6) 2011; 27 23618408 - Genome Biol. 2013 Apr 25;14(4):R36 18184432 - BMC Bioinformatics. 2008 Jan 09;9:11 23558750 - Nucleic Acids Res. 2013 May 1;41(10):e109 21951053 - J Comput Biol. 2011 Nov;18(11):1693-707 22388286 - Nat Methods. 2012 Mar 04;9(4):357-9 22368243 - Bioinformatics. 2012 Apr 15;28(8):1086-92 23845962 - Nat Protoc. 2013 Aug;8(8):1494-512 23202746 - Bioinformatics. 2013 Feb 1;29(3):308-15 19542152 - Bioinformatics. 2009 Sep 1;25(17):2157-63 22492192 - Brief Bioinform. 2013 Jan;14(1):56-66 20378555 - Bioinformatics. 2010 May 15;26(10):1284-90 21551146 - Bioinformatics. 2011 Jul 1;27(13):1869-70 25398208 - Genome Biol. 2014;15(11):509 21115437 - Bioinformatics. 2011 Feb 1;27(3):295-302 22962361 - Nucleic Acids Res. 2012 Nov 1;40(20):10073-83 23368723 - BMC Genomics. 2013;14 Suppl 1:S7 23422339 - Bioinformatics. 2013 Apr 15;29(8):1072-5 25953801 - Bioinformatics. 2015 Sep 1;31(17):2885-7 21114842 - Genome Biol. 2010;11(11):R116 24451628 - Bioinformatics. 2014 May 15;30(10):1354-62 22506599 - J Comput Biol. 2012 May;19(5):455-77 21471014 - Bioinformatics. 2011 Jun 1;27(11):1455-61 21685062 - Bioinformatics. 2011 Jul 1;27(13):i137-41 21217122 - Bioinformatics. 2011 Mar 15;27(6):764-70 |
References_xml | – ident: 2024111712170408800_CR26 – volume: 11 start-page: R116 issue: 11 year: 2010 ident: 2024111712170408800_CR5 article-title: Quake: quality-aware detection and correction of sequencing errors publication-title: Genome Biol. doi: 10.1186/gb-2010-11-11-r116 – volume: 41 start-page: e109 issue: 10 year: 2013 ident: 2024111712170408800_CR12 article-title: Probabilistic error correction for RNA sequencing publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt215 – volume: 25 start-page: 2157 issue: 17 year: 2009 ident: 2024111712170408800_CR8 article-title: SHREC: a short-read error correction method publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btp379 – volume: 27 start-page: i137 issue: 13 year: 2011 ident: 2024111712170408800_CR6 article-title: Error correction of high-throughput sequencing datasets with non-uniform coverage publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btr208 – volume: 14 start-page: S7 issue: S-1 year: 2013 ident: 2024111712170408800_CR23 publication-title: BMC Genomics. doi: 10.1186/1471-2164-14-S1-S7 – volume: 29 start-page: 1072 issue: 8 year: 2013 ident: 2024111712170408800_CR25 article-title: QUAST: quality assessment tool for genome assemblies publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btt086 – volume: 15 start-page: 509 issue: 11 year: 2014 ident: 2024111712170408800_CR3 article-title: Lighter: fast and memory-efficient sequencing error correction without counting publication-title: Genome Biol. doi: 10.1186/s13059-014-0509-9 – volume: 29 start-page: 308 issue: 3 year: 2013 ident: 2024111712170408800_CR7 article-title: Musket: a multistage k-mer spectrum-based error corrector for Illumina sequence data publication-title: Bioinformatics. doi: 10.1093/bioinformatics/bts690 – volume: 31 start-page: 2885 issue: 17 year: 2015 ident: 2024111712170408800_CR2 article-title: BFC: correcting Illumina sequencing errors publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btv290 – volume: 26 start-page: 1284 issue: 10 year: 2010 ident: 2024111712170408800_CR9 article-title: Correction of sequencing errors in a mixed set of reads publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btq151 – volume: 14 start-page: R36 issue: 4 year: 2013 ident: 2024111712170408800_CR17 article-title: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions publication-title: Genome Biol. doi: 10.1186/gb-2013-14-4-r36 – volume: 28 start-page: 1086 issue: 8 year: 2012 ident: 2024111712170408800_CR18 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/bts094 – volume: 8 start-page: 1494 year: 2013 ident: 2024111712170408800_CR21 article-title: De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis publication-title: Nat Protocols. doi: 10.1038/nprot.2013.084 – volume: 9 start-page: 11 issue: 1 year: 2008 ident: 2024111712170408800_CR16 article-title: SeqAn: An efficient, generic C++ library for sequence analysis publication-title: BMC Bioinformatics. doi: 10.1186/1471-2105-9-11 – volume: 27 start-page: 1869 issue: 13 year: 2011 ident: 2024111712170408800_CR19 article-title: Sim4db and Leaff: utilities for fast batch spliced alignment and sequence indexing publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btr285 – start-page: 1693 volume-title: J Comput Biol. ident: 2024111712170408800_CR20 article-title: IsoLasso: A LASSO regression approach to RNA-seq based transcriptome assembly – volume: 40 start-page: 10073 issue: 20 year: 2012 ident: 2024111712170408800_CR15 article-title: Modelling and simulating generic RNA-Seq experiments with the flux simulator publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks666 – volume: 14 start-page: 56 issue: 1 year: 2013 ident: 2024111712170408800_CR4 article-title: A survey of error-correction methods for next-generation sequencing publication-title: Brief Bioinformatics. doi: 10.1093/bib/bbs015 – volume-title: bioRxiv. year: 2015 ident: 2024111712170408800_CR13 article-title: Optimizing error correction of RNAseq reads doi: 10.1101/020123 – volume: 27 start-page: 764 issue: 6 year: 2011 ident: 2024111712170408800_CR14 article-title: A fast, lock-free approach for efficient parallel counting of occurrences of k-mers publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btr011 – volume: 27 start-page: 1455 issue: 11 year: 2011 ident: 2024111712170408800_CR11 article-title: Correcting Errors in Short Reads by Multiple Alignments publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btr170 – volume: 9 start-page: 357 issue: 4 year: 2012 ident: 2024111712170408800_CR24 article-title: Fast gapped-read alignment with Bowtie 2 publication-title: Nat Methods. doi: 10.1038/nmeth.1923 – volume: 27 start-page: 295 issue: 3 year: 2011 ident: 2024111712170408800_CR10 article-title: HiTEC: accurate error correction in high-throughput sequencing data publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btq653 – volume: 30 start-page: 1354 issue: 10 year: 2014 ident: 2024111712170408800_CR1 article-title: BLESS: Bloom-filter-based Error Correction Solution for High-throughput Sequencing Reads publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btu030 – volume: 19 start-page: 455 issue: 4 year: 2012 ident: 2024111712170408800_CR22 article-title: SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing publication-title: J Comput Biol. doi: 10.1089/cmb.2012.0021 – reference: 18184432 - BMC Bioinformatics. 2008 Jan 09;9:11 – reference: 21114842 - Genome Biol. 2010;11(11):R116 – reference: 22388286 - Nat Methods. 2012 Mar 04;9(4):357-9 – reference: 23845962 - Nat Protoc. 2013 Aug;8(8):1494-512 – reference: 21951053 - J Comput Biol. 2011 Nov;18(11):1693-707 – reference: 22368243 - Bioinformatics. 2012 Apr 15;28(8):1086-92 – reference: 25953801 - Bioinformatics. 2015 Sep 1;31(17):2885-7 – reference: 23202746 - Bioinformatics. 2013 Feb 1;29(3):308-15 – reference: 23368723 - BMC Genomics. 2013;14 Suppl 1:S7 – reference: 22506599 - J Comput Biol. 2012 May;19(5):455-77 – reference: 23422339 - Bioinformatics. 2013 Apr 15;29(8):1072-5 – reference: 22492192 - Brief Bioinform. 2013 Jan;14(1):56-66 – reference: 23618408 - Genome Biol. 2013 Apr 25;14(4):R36 – reference: 21115437 - Bioinformatics. 2011 Feb 1;27(3):295-302 – reference: 21685062 - Bioinformatics. 2011 Jul 1;27(13):i137-41 – reference: 24451628 - Bioinformatics. 2014 May 15;30(10):1354-62 – reference: 19542152 - Bioinformatics. 2009 Sep 1;25(17):2157-63 – reference: 23558750 - Nucleic Acids Res. 2013 May 1;41(10):e109 – reference: 20378555 - Bioinformatics. 2010 May 15;26(10):1284-90 – reference: 22962361 - Nucleic Acids Res. 2012 Nov 1;40(20):10073-83 – reference: 25398208 - Genome Biol. 2014;15(11):509 – reference: 21217122 - Bioinformatics. 2011 Mar 15;27(6):764-70 – reference: 21471014 - Bioinformatics. 2011 Jun 1;27(11):1455-61 – reference: 21551146 - Bioinformatics. 2011 Jul 1;27(13):1869-70 |
SSID | ssj0000778873 |
Score | 2.5288012 |
Snippet | Abstract
Background
Next-generation sequencing of cellular RNA (RNA-seq) is rapidly becoming the cornerstone of transcriptomic analysis. However, sequencing... Next-generation sequencing of cellular RNA (RNA-seq) is rapidly becoming the cornerstone of transcriptomic analysis. However, sequencing errors in the already... Background Next-generation sequencing of cellular RNA (RNA-seq) is rapidly becoming the cornerstone of transcriptomic analysis. However, sequencing errors in... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 48 |
SubjectTerms | Alternative splicing Bioinformatics Error analysis Error correction Error correction & detection Gene expression Gene sequencing Graph theory Next-generation sequencing Ribonucleic acid RNA RNA - genetics Sequence Analysis, RNA - methods Technical Note Transcriptomics Whole genome sequencing |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9wwDLc29sLLBIyP8jFl0tgDUkSbtMmFlwlNIDZp94CGdG9VmqQCCfXgevfAf4_dy5W7CXiOa6W2E_-cODbAd4L1yikMSwoXeJ4HxY2pDRfG10GQz-gq3vwdqqub_M-oGMUDtzamVS72xG6j9mNHZ-SnGcJARM_ofX4-PHLqGkW3q7GFxkf4RKXLKKVLj3R_xpJqypWT8TIzG6jTNpMYC2L8XHB0foY_rbijlSduS0jz_4TJJQ90uQGfI3Rk53Ndb8KH0GzBUXx4wH6w-LKIJM3ikv0Cw2tH_TfoaP6Mha5eBHJntvHMOjejQhEsTCbjCYt09DXyYb-pBfJdY9n18Jy34ZEhuvTtNtxcXvz7dcVjDwXuMLKZci-0yK20Pk1rm0kXEJIobwrvB1UtU1uFwksdhEWd5an3VjkEDOj3jayCqZzcgbVm3IQ9YFZJDMaKgagdlQ201ougNOo0RdQlnE0gXYiydLHAOPW5uC-7QGOgyrn0S2RSkvTLpwRO-k8e5tU13iM-Rv28Qbek0gQOFxos44JsyxfzeXVYZjJDeSFeSeBbP4wrja5PbBPGM2IhNKFpiSx25_bQT0Yg0E210gnoFUvpCaiK9-pIc3fbVfPGORVopPvvz_oA1gX9IuXSmENYm05m4Qjh0LT62tn8M8D7BoE priority: 102 providerName: ProQuest |
Title | Rcorrector: efficient and accurate error correction for Illumina RNA-seq reads |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26500767 https://www.proquest.com/docview/1772174613 https://www.proquest.com/docview/3131625242 https://www.proquest.com/docview/1727991633 https://pubmed.ncbi.nlm.nih.gov/PMC4615873 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFD708rKXsa27eGuDCtseBtpsyZbswRjtaNYNGkZYIG9GlmRaKM7qJLD8-53jKCEZWWEvfpF8bJ-L9R1dvgPwmmC9sgrTksx6nqZe8aKoCy4KV3tBY0bHeHM1UJej9Ps4G-_BqrxVUOB0Z2pH9aRG7e3733eLzxjwn7qAz9WHaSIxwcOkOOM4ohV8sQ-H-BBNcXoV0H73Y9a0dY7WnEXHT5DocVjn3Clla6TaOv22AUL_3ku5MTj1H8HDgCrZ2dINHsOeb57ASTiTwN6ycOiIjMBCNB_BYGipNAfN2n9kvqOSQOnMNI4Za-fEIcF8205aFvrR3SiHfaPqyDeNYcPBGZ_6O4bA002fwqh_8fPLJQ_lFbjFpGfGndAiNdK4OK5NIq1HtKJckTmXV7WMTeUzJ7UXBs2Zxs4ZZRFLICQoZOWLyspncNBMGv8CmFES87QsF7UlRkFjnPBKo7ljBGTCmgjilSpLG7jHqQTGbdnlILkql9ovUUhJ2i8XEbxb3_JrSbxxX-c3aJ9_9NswaQTHKwuWK1crE0wwMC9DXLOzWSYyQX0hlIngdN2MQUgrK6bxkzmJEJqAtkQRz5f-sH4ZgRg41kpHoLc8Zd2BCL63W5qb647oG98pQ4d9-T-qeAUPBH0wbbopjuFg1s79CeKmWdWDfT3WeM37X3tweH4x-DHsdXMQvS5O_gBolhP2 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAL4k2gLUaiHJCsJnZibypVqAKqXdruoWqlvQXHdkQllG03u0L7p_iNzOTVXQS99WxnZM-M_X0T2zMA74nWK6swLEms53HsFU_TIuUidYUXhBl1xpvTsRpexN8myWQDfndvYehaZbcn1hu1m1r6R74XIQ1E9ozo8-nqmlPVKDpd7UpoNG5x7Je_MGSrDkZf0L67Qhx9Pf885G1VAW6R68-5E1rERhoXhoWJpPUI0sqliXODvJChyX3ipPbC4Czi0DmjLEIoImEqc5_mVqLce3AfgTekFaUnuv-nE2q6myfbw9NooPaqSGLsifF6whFsU75cg7-1J3UrzPbvC5oriHf0GB61VJUdNr71BDZ8-RS224cO7ANrXzKRZVm7RTyD8Zmleh90FLDPfJ2fAqUzUzpmrF1QYgrmZ7PpjLX96GuUw0ZUcvmyNOxsfMgrf82QzbrqOVzciXZfwGY5Lf0rYEZJDP6SgSgspSk0xgmvNPpQiCxPWBNA2Kkys21Cc6qr8TOrA5uByhrtZygkI-1nywA-9p9cNdk8buu8i_b5T78Vkwaw1VkwazeAKrtx1382y0hGqC_kRwG865txZdNxjSn9dEEihCb2LlHEy8Yf-sEIJNahVjoAveYpfQfKGr7eUl7-qLOH45gSdNLXt4_6LTwYnp-eZCej8fEbeChounSPJ92Czfls4beRis3zndr_GXy_6wX3B7f3Q_g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rcorrector%3A+efficient+and+accurate+error+correction+for+Illumina+RNA-seq+reads&rft.jtitle=Gigascience&rft.au=Song%2C+Li&rft.au=Florea%2C+Liliana&rft.date=2015-10-19&rft.issn=2047-217X&rft.eissn=2047-217X&rft.volume=4&rft.issue=1&rft_id=info:doi/10.1186%2Fs13742-015-0089-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13742_015_0089_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-217X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-217X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-217X&client=summon |