Rcorrector: efficient and accurate error correction for Illumina RNA-seq reads

Abstract Background Next-generation sequencing of cellular RNA (RNA-seq) is rapidly becoming the cornerstone of transcriptomic analysis. However, sequencing errors in the already short RNA-seq reads complicate bioinformatics analyses, in particular alignment and assembly. Error correction methods ha...

Full description

Saved in:
Bibliographic Details
Published inGigascience Vol. 4; no. 1; p. 48
Main Authors Song, Li, Florea, Liliana
Format Journal Article
LanguageEnglish
Published United States Oxford University Press 19.10.2015
BioMed Central
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Background Next-generation sequencing of cellular RNA (RNA-seq) is rapidly becoming the cornerstone of transcriptomic analysis. However, sequencing errors in the already short RNA-seq reads complicate bioinformatics analyses, in particular alignment and assembly. Error correction methods have been highly effective for whole-genome sequencing (WGS) reads, but are unsuitable for RNA-seq reads, owing to the variation in gene expression levels and alternative splicing. Findings We developed a k-mer based method, Rcorrector, to correct random sequencing errors in Illumina RNA-seq reads. Rcorrector uses a De Bruijn graph to compactly represent all trusted k-mers in the input reads. Unlike WGS read correctors, which use a global threshold to determine trusted k-mers, Rcorrector computes a local threshold at every position in a read. Conclusions Rcorrector has an accuracy higher than or comparable to existing methods, including the only other method (SEECER) designed for RNA-seq reads, and is more time and memory efficient. With a 5 GB memory footprint for 100 million reads, it can be run on virtually any desktop or server. The software is available free of charge under the GNU General Public License from https://github.com/mourisl/Rcorrector/.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2047-217X
2047-217X
DOI:10.1186/s13742-015-0089-y