Active trachoma among children in Mali: Clustering and environmental risk factors

Active trachoma is not uniformly distributed in endemic areas, and local environmental factors influencing its prevalence are not yet adequately understood. Determining whether clustering is a consistent phenomenon may help predict likely modes of transmission and help to determine the appropriate l...

Full description

Saved in:
Bibliographic Details
Published inPLoS neglected tropical diseases Vol. 4; no. 1; p. e583
Main Authors Hägi, Mathieu, Schémann, Jean-François, Mauny, Frédéric, Momo, Germain, Sacko, Doulaye, Traoré, Lamine, Malvy, Denis, Viel, Jean-François
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.01.2010
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Active trachoma is not uniformly distributed in endemic areas, and local environmental factors influencing its prevalence are not yet adequately understood. Determining whether clustering is a consistent phenomenon may help predict likely modes of transmission and help to determine the appropriate level at which to target control interventions. The aims of this study were, therefore, to disentangle the relative importance of clustering at different levels and to assess the respective role of individual, socio-demographic, and environmental factors on active trachoma prevalence among children in Mali. We used anonymous data collected during the Mali national trachoma survey (1996-1997) at different levels of the traditional social structure (14,627 children under 10 years of age, 6,251 caretakers, 2,269 households, 203 villages). Besides field-collected data, environmental variables were retrieved later from various databases at the village level. Bayesian hierarchical logistic models were fit to these prevalence and exposure data. Clustering revealed significant results at four hierarchical levels. The higher proportion of the variation in the occurrence of active trachoma was attributable to the village level (36.7%), followed by household (25.3%), and child (24.7%) levels. Beyond some well-established individual risk factors (age between 3 and 5, dirty face, and flies on the face), we showed that caretaker-level (wiping after body washing), household-level (common ownership of radio, and motorbike), and village-level (presence of a women's association, average monthly maximal temperature and sunshine fraction, average annual mean temperature, presence of rainy days) features were associated with reduced active trachoma prevalence. This study clearly indicates the importance of directing control efforts both at children with active trachoma as well as those with close contact, and at communities. The results support facial cleanliness and environmental improvements (the SAFE strategy) as population-health initiatives to combat blinding trachoma.
Bibliography:Conceived and designed the experiments: JFS LT DM. Performed the experiments: JFS GM DS LT. Analyzed the data: MH FM JFV. Wrote the paper: MH JFV.
ISSN:1935-2735
1935-2727
1935-2735
DOI:10.1371/journal.pntd.0000583