Reversal of P‐Glycoprotein‐mediated Paclitaxel Resistance by New Synthetic Isoprenoids in Human Bladder Cancer Cell Line
We isolated a paclitaxel‐resistant cell line (KK47/TX30) from a human bladder cancer cell line (KK47/WT) in order to investigate the mechanism of and reversal agents for paclitaxel resistance. KK47/TX30 cells exhibited 700‐fold resistance to paclitaxel and cross‐resistance to vinca alkaloids and top...
Saved in:
Published in | Cancer science Vol. 93; no. 9; pp. 1037 - 1046 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.09.2002
John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We isolated a paclitaxel‐resistant cell line (KK47/TX30) from a human bladder cancer cell line (KK47/WT) in order to investigate the mechanism of and reversal agents for paclitaxel resistance. KK47/TX30 cells exhibited 700‐fold resistance to paclitaxel and cross‐resistance to vinca alkaloids and topoisomerase II inhibitors. Tubulin polymerization assay showed no significant difference in the ratio of polymerized α‐ and β‐tubulin between KK47/WT and KK47/TX30 cells. Western blot analysis demonstrated overexpression of P‐glycoprotein (P‐gp) and lung resistance‐related protein (LRP) in KK47/TX30 cells. Drug accumulation and efflux studies showed that the decreased paclitaxel accumulation in KK47/TX30 cells was due to enhanced paclitaxel efflux. Cell survival assay revealed that verapamil and cepharanthine, conventional P‐gp modulators, could completely overcome paclitaxel resistance. To investigate whether new synthetic isoprenoids could overcome paclitaxel resistance, we synthesized 31 isoprenoids based on the structure of N‐solanesyl‐N, N′‐bis(3,4‐dimethoxybenzyl)ethylenediamine (SDB), which could reverse multidrug resistance (MDR), as shown previously. Among those examined, trans‐N, N′‐bis(3,4‐dimethoxybenzyl)‐.N‐solanesyl‐l,2‐diaminocyclohexane (N‐5228) could completely reverse paclitaxel resistance in KK47/TX30 cells. N‐5228 inhibited photoaffinity labeling of P‐gp by [3H]azidopine, suggesting that N‐5228 could bind to P‐gp directly and could be a substrate of P‐gp. Next, we investigated structural features of these 31 isoprenoids in order to determine the structural requirements for the reversal of P‐gp‐mediated paclitaxel resistance, suggesting that the following structural features are important for overcoming paclitaxel resistance: (1) a basic structure of 8 to 10 isoprene units, (2) a cyclohexane ring or benzene ring within the framework, (3) two cationic sites in close proximity to each other, and (4) a benzyl group with 3, 4‐dimethoxy functionalities, which have moderate electron‐donating ability. These findings may provide valuable information for the development of P‐gp‐mediated MDR‐reversing agents. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0910-5050 1347-9032 1349-7006 1876-4673 |
DOI: | 10.1111/j.1349-7006.2002.tb02481.x |