A network control theory approach to modeling and optimal control of zoonoses: case study of brucellosis transmission in sub-Saharan Africa

Developing control policies for zoonotic diseases is challenging, both because of the complex spread dynamics exhibited by these diseases, and because of the need for implementing complex multi-species surveillance and control efforts using limited resources. Mathematical models, and in particular n...

Full description

Saved in:
Bibliographic Details
Published inPLoS neglected tropical diseases Vol. 5; no. 10; p. e1259
Main Authors Roy, Sandip, McElwain, Terry F, Wan, Yan
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.10.2011
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Developing control policies for zoonotic diseases is challenging, both because of the complex spread dynamics exhibited by these diseases, and because of the need for implementing complex multi-species surveillance and control efforts using limited resources. Mathematical models, and in particular network models, of disease spread are promising as tools for control-policy design, because they can provide comprehensive quantitative representations of disease transmission. A layered dynamical network model for the transmission and control of zoonotic diseases is introduced as a tool for analyzing disease spread and designing cost-effective surveillance and control. The model development is achieved using brucellosis transmission among wildlife, cattle herds, and human sub-populations in an agricultural system as a case study. Precisely, a model that tracks infection counts in interacting animal herds of multiple species (e.g., cattle herds and groups of wildlife for brucellosis) and in human subpopulations is introduced. The model is then abstracted to a form that permits comprehensive targeted design of multiple control capabilities as well as model identification from data. Next, techniques are developed for such quantitative design of control policies (that are directed to both the animal and human populations), and for model identification from snapshot and time-course data, by drawing on recent results in the network control community. The modeling approach is shown to provide quantitative insight into comprehensive control policies for zoonotic diseases, and in turn to permit policy design for mitigation of these diseases. For the brucellosis-transmission example in particular, numerous insights are obtained regarding the optimal distribution of resources among available control capabilities (e.g., vaccination, surveillance and culling, pasteurization of milk) and points in the spread network (e.g., transhumance vs. sedentary herds). In addition, a preliminary identification of the network model for brucellosis is achieved using historical data, and the robustness of the obtained model is demonstrated. As a whole, our results indicate that network modeling can aid in designing control policies for zoonotic diseases.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: SR TM YW. Performed the experiments: SR. Analyzed the data: SR TM YW. Contributed reagents/materials/analysis tools: SR YW. Wrote the paper: SR TM YW.
ISSN:1935-2735
1935-2727
1935-2735
DOI:10.1371/journal.pntd.0001259