Chronic hyperadiponectinemia induced by transgenic overexpression increases plasma exosomes without significantly improving glucose and lipid metabolism

The fat-derived factor, adiponectin, is considered a salutary circulating factor. We recently demonstrated that native adiponectin binds T-cadherin and promotes intracellular biogenesis and secretion of the exosome. Exosomes play important roles in various aspects of homeostasis, including glucose a...

Full description

Saved in:
Bibliographic Details
Published inENDOCRINE JOURNAL Vol. 70; no. 6; pp. 635 - 645
Main Authors Kawada, Keitaro, Kita, Shunbun, Fukuda, Shiro, Fukuoka, Keita, Okita, Tomonori, Kawada-Horitani, Emi, Iioka, Masahito, Sakaue, Taka-aki, Kawachi, Yusuke, Fujii, Kohei, Kimura, Yu, Otabe, Shuichi, Fujishima, Yuya, Nishizawa, Hitoshi, Maeda, Norikazu, Shimomura, Iichiro
Format Journal Article
LanguageEnglish
Japanese
Published Japan The Japan Endocrine Society 2023
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The fat-derived factor, adiponectin, is considered a salutary circulating factor. We recently demonstrated that native adiponectin binds T-cadherin and promotes intracellular biogenesis and secretion of the exosome. Exosomes play important roles in various aspects of homeostasis, including glucose and energy metabolism. However, it remains unclear whether and how the promotion of exosome production by adiponectin in vivo is beneficial for glucose and lipid metabolism. In the present study, overexpression of human adiponectin in mice resulted in an increased number of circulating exosomes, but it did not significantly improve glucose metabolism, change body weights, or change triglyceride clearance under a high-fat diet. Multiple small doses of streptozotocin increased blood glucose and decreased triglyceride clearance similarly in both wild-type and transgenic mice. Thus, these results indicated that human adiponectin overexpression in mice increases plasma exosomes but does not significantly influence glucose and lipid metabolism.
AbstractList The fat-derived factor, adiponectin, is considered a salutary circulating factor. We recently demonstrated that native adiponectin binds T-cadherin and promotes intracellular biogenesis and secretion of the exosome. Exosomes play important roles in various aspects of homeostasis, including glucose and energy metabolism. However, it remains unclear whether and how the promotion of exosome production by adiponectin in vivo is beneficial for glucose and lipid metabolism. In the present study, overexpression of human adiponectin in mice resulted in an increased number of circulating exosomes, but it did not significantly improve glucose metabolism, change body weights, or change triglyceride clearance under a high-fat diet. Multiple small doses of streptozotocin increased blood glucose and decreased triglyceride clearance similarly in both wild-type and transgenic mice. Thus, these results indicated that human adiponectin overexpression in mice increases plasma exosomes but does not significantly influence glucose and lipid metabolism.
[Abstract.] The fat-derived factor, adiponectin, is considered a salutary circulating factor. We recently demonstrated that native adiponectin binds T-cadherin and promotes intracellular biogenesis and secretion of the exosome. Exosomes play important roles in various aspects of homeostasis, including glucose and energy metabolism. However, it remains unclear whether and how the promotion of exosome production by adiponectin in vivo is beneficial for glucose and lipid metabolism. In the present study, overexpression of human adiponectin in mice resulted in an increased number of circulating exosomes, but it did not significantly improve glucose metabolism, change body weights, or change triglyceride clearance under a high-fat diet. Multiple small doses of streptozotocin increased blood glucose and decreased triglyceride clearance similarly in both wild-type and transgenic mice. Thus, these results indicated that human adiponectin overexpression in mice increases plasma exosomes but does not significantly influence glucose and lipid metabolism.
ArticleNumber EJ22-0665
Author Okita, Tomonori
Otabe, Shuichi
Kimura, Yu
Fujii, Kohei
Nishizawa, Hitoshi
Kawada, Keitaro
Fujishima, Yuya
Maeda, Norikazu
Fukuda, Shiro
Kita, Shunbun
Fukuoka, Keita
Kawachi, Yusuke
Kawada-Horitani, Emi
Sakaue, Taka-aki
Iioka, Masahito
Shimomura, Iichiro
Author_xml – sequence: 1
  fullname: Kawada, Keitaro
  organization: Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
– sequence: 2
  fullname: Kita, Shunbun
  organization: Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
– sequence: 3
  fullname: Fukuda, Shiro
  organization: Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
– sequence: 4
  fullname: Fukuoka, Keita
  organization: Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
– sequence: 5
  fullname: Okita, Tomonori
  organization: Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
– sequence: 6
  fullname: Kawada-Horitani, Emi
  organization: Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
– sequence: 7
  fullname: Iioka, Masahito
  organization: Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
– sequence: 8
  fullname: Sakaue, Taka-aki
  organization: Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
– sequence: 9
  fullname: Kawachi, Yusuke
  organization: Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
– sequence: 10
  fullname: Fujii, Kohei
  organization: Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
– sequence: 11
  fullname: Kimura, Yu
  organization: Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
– sequence: 12
  fullname: Otabe, Shuichi
  organization: Otabe Clinic, Fukuoka 811-1346, Japan
– sequence: 13
  fullname: Fujishima, Yuya
  organization: Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
– sequence: 14
  fullname: Nishizawa, Hitoshi
  organization: Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
– sequence: 15
  fullname: Maeda, Norikazu
  organization: Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
– sequence: 16
  fullname: Shimomura, Iichiro
  organization: Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37062722$$D View this record in MEDLINE/PubMed
BookMark eNpdks1u1DAUhS1URKeFB2CDLLFhk-KfxI6XaFQKqBKb7i3HuZnxyLFTOymdN-Fx8TDDVGJzLcvfPffoHl-hixADIPSekhvaEPkZQh9t2t3c_mCsIkI0r9CK8rqt6qYmF2hFFG2rVjXqEl3lvCOE86bmb9All0QwydgK_V5vUwzO4u1-gmR6N5URdnYBRmewC_1iocfdHs_JhLyBAxqfIMHzlCBnF0OBbAKTIePJmzwaDM8xx7Hcf7l5G5cZZ7cJbnDWhNnvsRunFJ9c2OCNX2zMgE3osXeT6_EIs-mid3l8i14Pxmd4dzqv0cPX24f1t-r-59339Zf7ygrG50pxMyhDrFQdDNQqJrqu5UxRymzfEVPWJPtOmG6oawZcSsOU7Hk3ENXWReEafTrKFk-PC-RZjy5b8N4EiEvWrCWsZoKqpqAf_0N3cUmhmCtUQ2ohKeWFokfKpphzgkFPyY0m7TUl-pCaPqWmD6npQ2ql58NJeelG6M8d_2IqwN0RKK9ljT4GXxJ6mW8fxV9VzQjjmhBJiNCE0iLPm1LKf2Cc1aJ9Udrl2WzgPMqk2VkPZ3OSaHEoZ5Nnwm5NKhj_A6PQy3k
CitedBy_id crossref_primary_10_1016_j_bbrc_2024_150041
Cites_doi 10.1080/20013078.2019.1648167
10.1172/JCI129193
10.2337/dbi17-0016
10.1126/science.1153124
10.1152/ajpendo.00645.2006
10.1074/jbc.M300365200
10.1074/jbc.M309469200
10.1074/jbc.C200251200
10.1007/s00125-016-4061-x
10.1093/jb/mvaa105
10.1016/j.ecl.2008.07.002
10.1007/s00125-003-1074-z
10.1038/nature12656
10.1172/jci.insight.99680
10.1002/prca.201100052
10.1210/jc.2013-3843
10.1161/CIRCRESAHA.116.308716
10.1038/nature01705
10.1038/ncb2502
10.1093/jmcb/mjw011
10.2337/db13-0128
10.1006/bbrc.1999.0255
10.1038/s42255-019-0041-z
10.1210/en.2014-1618
10.1016/j.cmet.2013.03.005
10.1371/journal.pone.0044270
10.1074/jbc.M207198200
10.1038/s41598-018-37115-3
10.1074/mcp.M111.010504
10.1038/s41556-018-0250-9
10.1038/s41467-020-19668-y
10.1074/jbc.C200362200
10.1210/en.2004-1096
10.1038/s42255-020-0171-3
10.1152/ajpendo.00621.2005
10.1038/nm724
10.1016/j.devcel.2011.08.019
10.1074/jbc.M117.780734
10.1016/j.atherosclerosis.2019.10.021
10.1016/j.beem.2013.09.003
10.1007/s00125-017-4516-8
10.1074/jbc.M505311200
10.1038/90984
10.1038/s41538-021-00114-2
10.1093/clinchem/hvaa227
10.1152/ajpendo.00393.2020
10.1016/j.ymthe.2020.06.026
10.1210/en.2003-1068
10.1038/nri1937
ContentType Journal Article
Copyright The Japan Endocrine Society
Copyright Japan Science and Technology Agency 2023
Copyright_xml – notice: The Japan Endocrine Society
– notice: Copyright Japan Science and Technology Agency 2023
CorporateAuthor Graduate School of Medicine
Osaka University
Department of Metabolic Medicine
Otabe Clinic
Department of Adipose Management
Department of Metabolism and Atherosclerosis
CorporateAuthor_xml – name: Department of Metabolism and Atherosclerosis
– name: Graduate School of Medicine
– name: Otabe Clinic
– name: Osaka University
– name: Department of Metabolic Medicine
– name: Department of Adipose Management
DBID NPM
AAYXX
CITATION
7QP
7T5
7TK
8FD
FR3
H94
P64
RC3
7X8
DOI 10.1507/endocrj.EJ22-0665
DatabaseName PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Genetics Abstracts
Technology Research Database
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts

PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1348-4540
EndPage 645
ExternalDocumentID 10_1507_endocrj_EJ22_0665
37062722
cq6endoc_2023_007006_011_0635_06454232468
article_endocrj_70_6_70_EJ22_0665_article_char_en
Genre Journal Article
GroupedDBID ---
.55
.GJ
29G
2WC
3O-
53G
5GY
5RE
AAEJM
ACPRK
ACRZS
ADBBV
AENEX
AJJEV
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKOMP
CS3
DIK
DU5
E3Z
EBD
EBS
EJD
EMOBN
F5P
GROUPED_DOAJ
JMI
JSF
JSH
KQ8
MOJWN
M~E
OK1
P2P
RJT
RNS
RZJ
SV3
TKC
TR2
X7M
XSB
ZGI
ZXP
NPM
AAYXX
CITATION
7QP
7T5
7TK
8FD
FR3
H94
P64
RC3
7X8
ID FETCH-LOGICAL-c623t-93af9a0c79bef1c926bb8329112cdb0a5077db6abf442e377a297d3bf0984623
ISSN 0918-8959
IngestDate Fri Jun 28 03:30:38 EDT 2024
Fri Sep 13 06:50:44 EDT 2024
Fri Aug 23 02:16:54 EDT 2024
Sat Sep 28 08:19:13 EDT 2024
Fri May 31 15:01:48 EDT 2024
Sun Jul 28 06:07:46 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Extracellular vesicles
Glucose metabolism
Lipid metabolism
Exosomes
Adiponectin
Language English
Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c623t-93af9a0c79bef1c926bb8329112cdb0a5077db6abf442e377a297d3bf0984623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://dx.doi.org/10.1507/endocrj.EJ22-0665
PMID 37062722
PQID 2850467113
PQPubID 2048504
PageCount 11
ParticipantIDs proquest_miscellaneous_2802426195
proquest_journals_2850467113
crossref_primary_10_1507_endocrj_EJ22_0665
pubmed_primary_37062722
medicalonline_journals_cq6endoc_2023_007006_011_0635_06454232468
jstage_primary_article_endocrj_70_6_70_EJ22_0665_article_char_en
PublicationCentury 2000
PublicationDate 2023-00-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023-00-00
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Kyoto
PublicationTitle ENDOCRINE JOURNAL
PublicationTitleAlternate Endocr J
PublicationYear 2023
Publisher The Japan Endocrine Society
Japan Science and Technology Agency
Publisher_xml – name: The Japan Endocrine Society
– name: Japan Science and Technology Agency
References 37 Yamauchi T, Iwabu M, Okada-Iwabu M, Kadowaki T (2014) Adiponectin receptors: a review of their structure, function and how they work. Best Pract Res Clin Endocrinol Metab 28: 15–23.
44 Okada-Iwabu M, Yamauchi T, Iwabu M, Honma T, Hamagami K, et al. (2013) A small-molecule AdipoR agonist for type 2 diabetes and short life in obesity. Nature 503: 493–499.
28 Matsuda K, Fujishima Y, Maeda N, Mori T, Hirata A, et al. (2015) Positive feedback regulation between adiponectin and T–cadherin impacts adiponectin levels in tissue and plasma of male mice. Endocrinology 156: 934–946.
35 Kita S, Shimomura I (2021) Stimulation of exosome biogenesis by adiponectin, a circulating factor secreted from adipocytes. J Biochem 169: 173–179.
6 Kita S, Maeda N, Shimomura I (2019) Interorgan communication by exosomes, adipose tissue, and adiponectin in metabolic syndrome. J Clin Invest 129: 4041–4049.
27 Xia JY, Sun K, Hepler C, Ghaben AL, Gupta RK, et al. (2018) Acute loss of adipose tissue-derived adiponectin triggers immediate metabolic deterioration in mice. Diabetologia 61: 932–941.
29 Qiao L, Wattez JS, Lee S, Guo Z, Schaack J, et al. (2016) Knockout maternal adiponectin increases fetal growth in mice: potential role for trophoblast IGFBP-1. Diabetologia 59: 2417–2425.
20 Nakamura Y, Kita S, Tanaka Y, Fukuda S, Obata Y, et al. (2020) Adiponectin stimulates exosome release to enhance mesenchymal stem-cell-driven therapy of heart failure in mice. Mol Ther 28: 2203–2219.
8 Maeda N, Funahashi T, Matsuzawa Y, Shimomura I (2020) Adiponectin, a unique adipocyte-derived factor beyond hormones. Atherosclerosis 292: 1–9.
11 Ma K, Cabrero A, Saha PK, Kojima H, Li L, et al. (2002) Increased β-oxidation but no insulin resistance or glucose intolerance in mice lacking adiponectin. J Biol Chem 277: 34658–34661.
4 Lehr S, Hartwig S, Lamers D, Famulla S, Müller S, et al. (2012) Identification and validation of novel adipokines released from primary human adipocytes. Mol Cell Proteomics 11: M111.010504.
10 Kubota N, Terauchi Y, Yamauchi T, Kubota T, Moroi M, et al. (2002) Disruption of adiponectin causes insulin resistance and neointimal formation. J Biol Chem 277: 25863–25866.
12 Streeper RS, Koliwad SK, Villanueva CJ, Farese RV Jr (2006) Effects of DGAT1 deficiency on energy and glucose metabolism are independent of adiponectin. Am J Physiol Endocrinol Metab 291: E388–E394.
16 Menzaghi C, Trischitta V (2018) The adiponectin paradox for all-cause and cardiovascular mortality. Diabetes 67: 12–22.
24 Waki H, Yamauchi T, Kamon J, Ito Y, Uchida S, et al. (2003) Impaired multimerization of human adiponectin mutants associated with diabetes. Molecular structure and multimer formation of adiponectin. J Biol Chem 278: 40352–40363.
41 Santovito D, De Nardis V, Marcantonio P, Mandolini C, Paganelli C, et al. (2014) Plasma exosome microRNA profiling unravels a new potential modulator of adiponectin pathway in diabetes: effect of glycemic control. J Clin Endocrinol Metab 99: E1681–E1685.
14 Combs TP, Pajvani UB, Berg AH, Lin Y, Jelicks LA, et al. (2004) A transgenic mouse with a deletion in the collagenous domain of adiponectin displays elevated circulating adiponectin and improved insulin sensitivity. Endocrinology 145: 367–383.
39 Tilg H, Moschen AR (2006) Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol 6: 772–783.
49 Tullin S, Sams A, Brandt J, Dahl K, Gong W, et al. (2012) Recombinant adiponectin does not lower plasma glucose in animal models of type 2 diabetes. PLoS One 7: e44270.
5 Lehr S, Hartwig S, Sell H (2012) Adipokines: a treasure trove for the discovery of biomarkers for metabolic disorders. Proteomics Clin Appl 6: 91–101.
31 Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, et al. (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319: 1244–1247.
42 Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, et al. (2001) The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 7: 941–946.
26 Tsao TS, Tomas E, Murrey HE, Hug C, Lee DH, et al. (2003) Role of disulfide bonds in Acrp30/adiponectin structure and signaling specificity. Different oligomers activate different signal transduction pathways. J Biol Chem 278: 50810–50817.
13 Nawrocki AR, Rajala MW, Tomas E, Pajvani UB, Saha AK, et al. (2006) Mice lacking adiponectin show decreased hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator-activated receptor γ agonists. J Biol Chem 281: 2654–2660.
7 Wang ZV, Scherer PE (2016) Adiponectin, the past two decades. J Mol Cell Biol 8: 93–100.
18 Nielsen MB, Çolak Y, Benn M, Nordestgaard BG (2020) Causal relationship between plasma adiponectin and body mass index: one- and two-sample bidirectional mendelian randomization analyses in 460 397 individuals. Clin Chem 66: 1548–1557.
47 Waki H, Yamauchi T, Kamon J, Kita S, Ito Y, et al. (2005) Generation of globular fragment of adiponectin by leukocyte elastase secreted by monocytic cell line THP-1. Endocrinology 146: 790–796.
23 Fukuda S, Kita S, Obata Y, Fujishima Y, Nagao H, et al. (2017) The unique prodomain of T-cadherin plays a key role in adiponectin binding with the essential extracellular cadherin repeats 1 and 2. J Biol Chem 292: 7840–7849.
48 Mansuy-Aubert V, Zhou QL, Xie X, Gong Z, Huang JY, et al. (2013) Imbalance between neutrophil elastase and its inhibitor α1-antitrypsin in obesity alters insulin sensitivity, inflammation, and energy expenditure. Cell Metab 17: 534–548.
33 Tanaka Y, Kita S, Nishizawa H, Fukuda S, Fujishima Y, et al. (2019) Adiponectin promotes muscle regeneration through binding to T-cadherin. Sci Rep 9: 16.
25 Pajvani UB, Du X, Combs TP, Berg AH, Rajala MW, et al. (2003) Structure-function studies of the adipocyte-secreted hormone Acrp30/adiponectin. Implications fpr metabolic regulation and bioactivity. J Biol Chem 278: 9073–9085.
34 Tsugawa-Shimizu Y, Fujishima Y, Kita S, Minami S, Sakaue TA, et al. (2021) Increased vascular permeability and severe renal tubular damage after ischemia-reperfusion injury in mice lacking adiponectin or T-cadherin. Am J Physiol Endocrinol Metab 320: E179–E190.
19 Obata Y, Kita S, Koyama Y, Fukuda S, Takeda H, et al. (2018) Adiponectin/T-cadherin system enhances exosome biogenesis and decreases cellular ceramides by exosomal release. JCI Insight 3: e99680.
2 Mathieu M, Martin-Jaular L, Lavieu G, Thery C (2019) Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol 21: 9–17.
9 Maeda N, Shimomura I, Kishida K, Nishizawa H, Matsuda M, et al. (2002) Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med 8: 731–737.
32 van Niel G, Charrin S, Simoes S, Romao M, Rochin L, et al. (2011) The tetraspanin CD63 regulates ESCRT-independent and -dependent endosomal sorting during melanogenesis. Dev Cell 21: 708–721.
36 Straub LG, Scherer PE (2019) Metabolic Messengers: adiponectin. Nat Metab 1: 334–339.
45 Xu H, Zhao Q, Song N, Yan Z, Lin R, et al. (2020) AdipoR1/AdipoR2 dual agonist recovers nonalcoholic steatohepatitis and related fibrosis via endoplasmic reticulum-mitochondria axis. Nat Commun 11: 5807.
22 Sachs S, Bastidas-Ponce A, Tritschler S, Bakhti M, Bottcher A, et al. (2020) Targeted pharmacological therapy restores beta-cell function for diabetes remission. Nat Metab 2: 192–209.
17 Borges MC, Lawlor DA, de Oliveira C, White J, Horta BL, et al. (2016) Role of adiponectin in coronary heart disease risk: a mendelian randomization study. Circ Res 119: 491–499.
3 Halberg N, Wernstedt-Asterholm I, Scherer PE (2008) The adipocyte as an endocrine cell. Endocrinol Metab Clin North Am 37: 753–768, x–xi.
21 Otabe S, Yuan X, Fukutani T, Wada N, Hashinaga T, et al. (2007) Overexpression of human adiponectin in transgenic mice results in suppression of fat accumulation and prevention of premature death by high-calorie diet. Am J Physiol Endocrinol Metab 293: E210–E218.
30 Baietti MF, Zhang Z, Mortier E, Melchior A, Degeest G, et al. (2012) Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol 14: 677–685.
38 Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, et al. (1999) Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 257: 79–83.
1 Witwer KW, Thery C (2019) Extracellular vesicles or exosomes? On primacy, precision, and popularity influencing a choice of nomenclature. J Extracell Vesicles 8: 1648167.
43 Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, et al. (2003) Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423: 762–769.
40 Cnop M, Havel PJ, Utzschneider KM, Carr DB, Sinha MK, et al. (2003) Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age and sex. Diabetologia 46: 459–469.
46 Lee Y, Nakano A, Nakamura S, Sakai K, Tanaka M, et al. (2021) In vitro and in silico characterization of adiponectin-receptor agonist dipeptides. NPJ Sci Food 5: 29.
15 Yaghootkar H, Lamina C, Scott RA, Dastani Z, Hivert MF, et al. (2013) Mendelian randomization studies do not support a causal role for reduced circulating adiponectin levels in insulin resistance and type 2 diabetes. Diabetes 62: 3589–3598.
44
45
46
47
48
49
10
11
12
13
14
15
16
17
18
1
2
3
4
5
6
7
8
9
20
21
22
23
24
25
26
27
28
29
Y Obata (19) 2018; 3
30
31
32
33
34
35
36
37
38
39
40
41
42
43
References_xml – ident: 1
  doi: 10.1080/20013078.2019.1648167
– ident: 6
  doi: 10.1172/JCI129193
– ident: 16
  doi: 10.2337/dbi17-0016
– ident: 31
  doi: 10.1126/science.1153124
– ident: 21
  doi: 10.1152/ajpendo.00645.2006
– ident: 24
  doi: 10.1074/jbc.M300365200
– ident: 26
  doi: 10.1074/jbc.M309469200
– ident: 10
  doi: 10.1074/jbc.C200251200
– ident: 29
  doi: 10.1007/s00125-016-4061-x
– ident: 35
  doi: 10.1093/jb/mvaa105
– ident: 3
  doi: 10.1016/j.ecl.2008.07.002
– ident: 40
  doi: 10.1007/s00125-003-1074-z
– ident: 44
  doi: 10.1038/nature12656
– volume: 3
  start-page: e99680
  issn: 2379-3708
  year: 2018
  ident: 19
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.99680
  contributor:
    fullname: Y Obata
– ident: 5
  doi: 10.1002/prca.201100052
– ident: 41
  doi: 10.1210/jc.2013-3843
– ident: 17
  doi: 10.1161/CIRCRESAHA.116.308716
– ident: 43
  doi: 10.1038/nature01705
– ident: 30
  doi: 10.1038/ncb2502
– ident: 7
  doi: 10.1093/jmcb/mjw011
– ident: 15
  doi: 10.2337/db13-0128
– ident: 38
  doi: 10.1006/bbrc.1999.0255
– ident: 36
  doi: 10.1038/s42255-019-0041-z
– ident: 28
  doi: 10.1210/en.2014-1618
– ident: 48
  doi: 10.1016/j.cmet.2013.03.005
– ident: 49
  doi: 10.1371/journal.pone.0044270
– ident: 25
  doi: 10.1074/jbc.M207198200
– ident: 33
  doi: 10.1038/s41598-018-37115-3
– ident: 4
  doi: 10.1074/mcp.M111.010504
– ident: 2
  doi: 10.1038/s41556-018-0250-9
– ident: 45
  doi: 10.1038/s41467-020-19668-y
– ident: 11
  doi: 10.1074/jbc.C200362200
– ident: 47
  doi: 10.1210/en.2004-1096
– ident: 22
  doi: 10.1038/s42255-020-0171-3
– ident: 12
  doi: 10.1152/ajpendo.00621.2005
– ident: 9
  doi: 10.1038/nm724
– ident: 32
  doi: 10.1016/j.devcel.2011.08.019
– ident: 23
  doi: 10.1074/jbc.M117.780734
– ident: 8
  doi: 10.1016/j.atherosclerosis.2019.10.021
– ident: 37
  doi: 10.1016/j.beem.2013.09.003
– ident: 27
  doi: 10.1007/s00125-017-4516-8
– ident: 13
  doi: 10.1074/jbc.M505311200
– ident: 42
  doi: 10.1038/90984
– ident: 46
  doi: 10.1038/s41538-021-00114-2
– ident: 18
  doi: 10.1093/clinchem/hvaa227
– ident: 34
  doi: 10.1152/ajpendo.00393.2020
– ident: 20
  doi: 10.1016/j.ymthe.2020.06.026
– ident: 14
  doi: 10.1210/en.2003-1068
– ident: 39
  doi: 10.1038/nri1937
SSID ssj0033543
ssib022572652
ssib002822051
ssib000750009
Score 2.387075
Snippet The fat-derived factor, adiponectin, is considered a salutary circulating factor. We recently demonstrated that native adiponectin binds T-cadherin and...
[Abstract.] The fat-derived factor, adiponectin, is considered a salutary circulating factor. We recently demonstrated that native adiponectin binds T-cadherin...
SourceID proquest
crossref
pubmed
medicalonline
jstage
SourceType Aggregation Database
Index Database
Publisher
StartPage 635
SubjectTerms Adiponectin
Energy metabolism
Exosomes
Extracellular vesicles
Fat metabolism
Glucose metabolism
High fat diet
Homeostasis
Lipid metabolism
Streptozocin
T-cadherin
Transgenic mice
Title Chronic hyperadiponectinemia induced by transgenic overexpression increases plasma exosomes without significantly improving glucose and lipid metabolism
URI https://www.jstage.jst.go.jp/article/endocrj/70/6/70_EJ22-0665/_article/-char/en
http://mol.medicalonline.jp/en/journal/download?GoodsID=cq6endoc/2023/007006/011&name=0635-0645e
https://www.ncbi.nlm.nih.gov/pubmed/37062722
https://www.proquest.com/docview/2850467113/abstract/
https://search.proquest.com/docview/2802426195
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Endocrine Journal, 2023, Vol.70(6), pp.635-645
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKQNMkhPimMJCReKLK1sT5fAOhTdOk8UKR9mb5K1q2NiltIzb-DJ74c7mLnaRlmwS8RFV8cer-fj3f2XdnQt6JLI3T3E-9EMwNLxSx8FIdhZ4vYXIYs1xmGhOcTz7HR1_D49PodDD4uRa1VK_knvpxY17J_6AK9wBXzJL9B2S7TuEGfAZ84QoIw_WvMHaVbUdn4EwuhC7mVYn6qzSzQozA2a6Vsy9xQoJeQBQjNs2li37FKEe0GpdmicdJL2diZC6rZYUFnHCBFmOWMcADw4kAgekVJlW6NYg21h0X3qfFvNB4GDUwatrWJGyX-0tdKUwxHK0PCVW8-C60TUgzxUosqj4cwFq0X87qUtYdeQ_ri1q7hqKXxtvVRd_P-jKGzTHeM1bpMlzUjGzZplYr2-NEHPvWVWxsy5tcU_1RE-1hmkGd7x0cg5ON20rrsoDefNZwgSVYntlmRP9Rb7ttukPuBgl4j62bbmd3xqKQud1xeOP-tfftkO22hw1T5945WPtYxuH-zO7A2Uootzs2jYEzeUgeOM-EfrQ0e0QGpnxMtk9c7MUT8suxjd7ENurYRuUV7dlGN9lGO7ZRyzbaso06ttENttGObdSxjQLbaMM22rPtKZkcHkw-HXnuXA9PgbG98jIm8kyMVZJJk_sqC2IpYWKBaTdQWo4F_K6JlrGQeRgGhiWJCLJEM5mPM7CWA_aMbJUwwheE4kGeKldKB9oPfVA0sQGTLE9ljn5CqIbkfYsAn9vqLRy9XngDd8hxRI4jckPywWLUibo_dieajHmMl-6RTgJTJEEMuthAl7t_1pKrb3HTC0fucyyyhfGk4HyDixBxLBqJERNhnA7JbkuI_ukA9CZYNL7PhuRt1wwTAe7uidJUNco05rafwUCeWyJ1A2kZ-fLWlldkB7-ZXVzcJVurRW1eg7m9km8a_v8GLs3iSg
link.rule.ids 315,786,790,870,4043,27956,27957,27958
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chronic+hyperadiponectinemia+induced+by+transgenic+overexpression+increases+plasma+exosomes+without+significantly+improving+glucose+and+lipid+metabolism&rft.jtitle=Endocrine+journal&rft.au=Kawada%2C+Keitaro&rft.au=Kita%2C+Shunbun&rft.au=Fukuda%2C+Shiro&rft.au=Fukuoka%2C+Keita&rft.date=2023&rft.eissn=1348-4540&rft.volume=70&rft.issue=6&rft.spage=635&rft_id=info:doi/10.1507%2Fendocrj.EJ22-0665&rft_id=info%3Apmid%2F37062722&rft.externalDocID=37062722
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0918-8959&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0918-8959&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0918-8959&client=summon