A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination

MicroRNAs have been implicated as having important roles in stem cell biology. MicroRNA-9 (miR-9) is expressed specifically in neurogenic areas of the brain and may be involved in neural stem cell self-renewal and differentiation. We showed previously that the nuclear receptor TLX is an essential re...

Full description

Saved in:
Bibliographic Details
Published inNature structural & molecular biology Vol. 16; no. 4; pp. 365 - 371
Main Authors Shi, Yanhong, Li, Shengxiu, Zhao, Chunnian, Sun, GuoQiang
Format Journal Article
LanguageEnglish
Published United States Nature Publishing Group 01.04.2009
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:MicroRNAs have been implicated as having important roles in stem cell biology. MicroRNA-9 (miR-9) is expressed specifically in neurogenic areas of the brain and may be involved in neural stem cell self-renewal and differentiation. We showed previously that the nuclear receptor TLX is an essential regulator of neural stem cell self-renewal. Here we show that miR-9 suppresses TLX expression to negatively regulate neural stem cell proliferation and accelerate neural differentiation. Introducing a TLX expression vector that is not prone to miR-9 regulation rescued miR-9-induced proliferation deficiency and inhibited precocious differentiation. In utero electroporation of miR-9 in embryonic brains led to premature differentiation and outward migration of the transfected neural stem cells. Moreover, TLX represses expression of the miR-9 pri-miRNA. By forming a negative regulatory loop with TLX, miR-9 provides a model for controlling the balance between neural stem cell proliferation and differentiation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1545-9993
1545-9985
DOI:10.1038/nsmb.1576