Molecular evolutionary and structural analysis of familial exudative vitreoretinopathy associated FZD4 gene

Frizzled family members belong to G-protein coupled receptors and encode proteins accountable for cell signal transduction, cell proliferation and cell death. Members of Frizzled receptor family are considered to have critical roles in causing various forms of cancer, cardiac hypertrophy, familial e...

Full description

Saved in:
Bibliographic Details
Published inBMC ecology and evolution Vol. 19; no. 1; p. 72
Main Authors Seemab, Suman, Pervaiz, Nashaiman, Zehra, Rabail, Anwar, Saneela, Bao, Yiming, Abbasi, Amir Ali
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 08.03.2019
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Frizzled family members belong to G-protein coupled receptors and encode proteins accountable for cell signal transduction, cell proliferation and cell death. Members of Frizzled receptor family are considered to have critical roles in causing various forms of cancer, cardiac hypertrophy, familial exudative vitreoretinopathy (FEVR) and schizophrenia. This study investigates the evolutionary and structural aspects of Frizzled receptors, with particular focus on FEVR associated FZD4 gene. The phylogenetic tree topology suggests the diversification of Frizzled receptors at the root of metazoans history. Moreover, comparative structural data reveals that FEVR associated missense mutations in FZD4 effect the common protein region (amino acids 495-537) through a well-known phenomenon called epistasis. This critical protein region is present at the carboxyl-terminal domain and encompasses the K-T/S-XXX-W, a PDZ binding motif and S/T-X-V PDZ recognition motif. Taken together these results demonstrate that during the course of evolution, FZD4 has acquired new functions or epistasis via complex patter of gene duplications, sequence divergence and conformational remodeling. In particular, amino acids 495-537 at the C-terminus region of FZD4 protein might be crucial in its normal function and/or pathophysiology. This critical region of FZD4 protein may offer opportunities for the development of novel therapeutics approaches for human retinal vascular disease.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1471-2148
1471-2148
2730-7182
DOI:10.1186/s12862-019-1400-9