A key process of the nonstationary relationship between ENSO and the Western Pacific teleconnection pattern

Recent studies have discovered an intriguing nonstationary relationship between El Ninõ–Southern Oscillation (ENSO) and the Western Pacific (WP) teleconnection pattern, one of the most prominent winter atmospheric circulation patterns in the North Pacific, with a regime-dependent interdecadal modula...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 8; no. 1; pp. 9512 - 13
Main Authors Park, Young-Hyang, Kim, Baek-Min, Pak, Gyundo, Yamamoto, Masaru, Vivier, Frédéric, Durand, Isabelle
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 22.06.2018
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Recent studies have discovered an intriguing nonstationary relationship between El Ninõ–Southern Oscillation (ENSO) and the Western Pacific (WP) teleconnection pattern, one of the most prominent winter atmospheric circulation patterns in the North Pacific, with a regime-dependent interdecadal modulation of significant and insignificant correlations. However, the physical process underlying the observed nonstationary ENSO-WP relationship is a puzzle and remains to be elucidated, which is also essential for clarifying the still-debated nontrivial issue on whether the WP is directly forced by ENSO or by midlatitude storm tracks-driven intrinsic processes. Based on empirical orthogonal function (EOF) analysis of the upper-tropospheric teleconnection patterns and associated Rossby wave sources (RWS), we show that the nonstationarity in question is due to the regime-dependent constructive or destructive interference in meridional overturning circulation between the two leading EOFs of RWS best correlated with ENSO and WP, respectively. The observed insignificant correlation between ENSO and the WP after the 1988 regime shift can be explained by interrupted teleconnection between the tropics and high latitudes due to the collapse of the subtropical bridge pillar in the jet entrance region, consequence of the destructive interference. This suggested interference mechanism related to the regime-dependent upper-level RWS fields has significant implications for resolving the puzzle that hinders better understanding of decadal regime behaviors of the climate system in the North Pacific.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-018-27906-z