Recent Progress on MOF‐Derived Heteroatom‐Doped Carbon‐Based Electrocatalysts for Oxygen Reduction Reaction
The oxygen reduction reaction (ORR) is the core reaction of numerous sustainable energy‐conversion technologies such as fuel cells and metal–air batteries. It is crucial to develop a cost‐effective, highly active, and durable electrocatalysts for ORR to overcome the sluggish kinetics of four electro...
Saved in:
Published in | Advanced science Vol. 5; no. 3; pp. 1700515 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley & Sons, Inc
01.03.2018
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The oxygen reduction reaction (ORR) is the core reaction of numerous sustainable energy‐conversion technologies such as fuel cells and metal–air batteries. It is crucial to develop a cost‐effective, highly active, and durable electrocatalysts for ORR to overcome the sluggish kinetics of four electrons pathway. In recent years, the carbon‐based electrocatalysts derived from metal–organic frameworks (MOFs) have attracted tremendous attention and have been shown to exhibit superior catalytic activity and excellent intrinsic properties such as large surface area, large pore volume, uniform pore distribution, and tunable chemical structure. Here in this review, the development of MOF‐derived heteroatom‐doped carbon‐based electrocatalysts, including non‐metal (such as N, S, B, and P) and metal (such as Fe and Co) doped carbon materials, is summarized. It furthermore, it is demonstrated that the enhancement of ORR performance is associated with favorably well‐designed porous structure, large surface area, and high‐tensity active sites. Finally, the future perspectives of carbon‐based electrocatalysts for ORR are provided with an emphasis on the development of a clear mechanism of MOF‐derived non‐metal‐doped electrocatalysts and certain metal‐doped electrocatalysts.
Molecular organic framework‐derived heteroatom‐doped carbon‐based electrocatalysts, including nonmetal (such as N, S, B, and P) and metal (such as Fe and Co) doped carbon materials, have attracted tremendous attention and some of them exhibit superior electrocatalytic performance for oxygen reduction reaction. Significant progress has been achieved and more innovations for carbon‐based electrocatalysts will be realized in the future. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ISSN: | 2198-3844 2198-3844 |
DOI: | 10.1002/advs.201700515 |