Comparative transcriptomics and proteomics of p-hydroxybenzoate producing Pseudomonas putida S12: novel responses and implications for strain improvement

A transcriptomics and proteomics approach was employed to study the expression changes associated with p-hydroxybenzoate production by the engineered Pseudomonas putida strain S12palB1. To establish p-hydroxybenzoate production, phenylalanine-tyrosine ammonia lyase (pal/tal) was introduced to connec...

Full description

Saved in:
Bibliographic Details
Published inApplied microbiology and biotechnology Vol. 87; no. 2; pp. 679 - 690
Main Authors Verhoef, Suzanne, Ballerstedt, Hendrik, Volkers, Rita J. M, de Winde, Johannes H, Ruijssenaars, Harald J
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Berlin/Heidelberg : Springer-Verlag 01.06.2010
Springer-Verlag
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A transcriptomics and proteomics approach was employed to study the expression changes associated with p-hydroxybenzoate production by the engineered Pseudomonas putida strain S12palB1. To establish p-hydroxybenzoate production, phenylalanine-tyrosine ammonia lyase (pal/tal) was introduced to connect the tyrosine biosynthetic and p-coumarate degradation pathways. In agreement with the efficient p-hydroxybenzoate production, the tyrosine biosynthetic and p-coumarate catabolic pathways were upregulated. Also many transporters were differentially expressed, one of which—a previously uncharacterized multidrug efflux transporter with locus tags PP1271-PP1273—was found to be associated with p-hydroxybenzoate export. In addition to tyrosine biosynthesis, also tyrosine degradative pathways were upregulated. Eliminating the most prominent of these resulted in a 22% p-hydroxybenzoate yield improvement. Remarkably, the upregulation of genes contributing to p-hydroxybenzoate formation was much higher in glucose than in glycerol-cultured cells.
Bibliography:http://dx.doi.org/10.1007/s00253-010-2626-z
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0175-7598
1432-0614
DOI:10.1007/s00253-010-2626-z