Fast and accurate computational E-field dosimetry for group-level transcranial magnetic stimulation targeting

Transcranial magnetic stimulation (TMS) is used to study brain function and treat mental health disorders. During TMS, a coil placed on the scalp induces an E-field in the brain that modulates its activity. TMS is known to stimulate regions that are exposed to a large E-field. Clinical TMS protocols...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 167; p. 107614
Main Authors Hasan, Nahian I., Wang, Dezhi, Gomez, Luis J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.12.2023
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Transcranial magnetic stimulation (TMS) is used to study brain function and treat mental health disorders. During TMS, a coil placed on the scalp induces an E-field in the brain that modulates its activity. TMS is known to stimulate regions that are exposed to a large E-field. Clinical TMS protocols prescribe a coil placement based on scalp landmarks. There are inter-individual variations in brain anatomy that result in variations in the TMS-induced E-field at the targeted region and its outcome. These variations across individuals could in principle be minimized by developing a large database of head subjects and determining scalp landmarks that maximize E-field at the targeted brain region while minimizing its variation using computational methods. However, this approach requires repeated execution of a computational method to determine the E-field induced in the brain for a large number of subjects and coil placements. We developed a probabilistic matrix decomposition-based approach for rapidly evaluating the E-field induced during TMS for a large number of coil placements due to a pre-defined coil model. Our approach can determine the E-field induced in over 1 Million coil placements in 9.5 h, in contrast, to over 5 years using a brute-force approach. After the initial set-up stage, the E-field can be predicted over the whole brain within 2–3 ms and to 2% accuracy. We tested our approach in over 200 subjects and achieved an error of <2% in most and <3.5% in all subjects. We will present several examples of bench-marking analysis for our tool in terms of accuracy and speed. Furthermore, we will show the methods’ applicability for group-level optimization of coil placement for illustration purposes only. The software implementation link is provided in the appendix. [Display omitted] •A method for practical E-field informed group-level TMS coil placement is developed.•Determination of E-field informed optimal coil placement in seconds.•Enables close-loop and on-the-fly reconfiguration of TMS.•The initial set-up stage takes less than 10 hours.•The E-field is predicted for any coil placement in the brain within 3 milliseconds.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0010-4825
1879-0534
1879-0534
DOI:10.1016/j.compbiomed.2023.107614