Bovine respiratory syncytial virus enhances the attachment of Trueperella pyogenes to cells

In cattle, bovine respiratory syncytial virus (BRSV) is associated with secondary bacterial infections; however, the mechanisms of the interaction between BRSV and bacteria are unclear. Trueperella pyogenes (T. pyogenes) causes pneumonia in cattle and is involved in secondary infections following vi...

Full description

Saved in:
Bibliographic Details
Published inJournal of Veterinary Medical Science Vol. 86; no. 10; pp. 1068 - 1075
Main Authors YAMAMOTO, Satomi, OKUMURA, Shiori, KOBAYASHI, Risa, MAEDA, Yosuke, TAKAHASHI, Fumiaki, TANABE, Taishi
Format Journal Article
LanguageEnglish
Published Japan JAPANESE SOCIETY OF VETERINARY SCIENCE 2024
Japan Science and Technology Agency
The Japanese Society of Veterinary Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In cattle, bovine respiratory syncytial virus (BRSV) is associated with secondary bacterial infections; however, the mechanisms of the interaction between BRSV and bacteria are unclear. Trueperella pyogenes (T. pyogenes) causes pneumonia in cattle and is involved in secondary infections following viral infections. In this study, we evaluated the effect of BRSV infection on the adhesion of T. pyogenes to BRSV-infected cells. BRSV infection significantly enhanced the adhesion of T. pyogenes to cells in a multiplicity of infection- and time-dependent manner. The BRSV-mediated change in the adhesion of T. pyogenes was widely observed in various cell types and bacterial strains. The results from the gentamicin protection assay showed that BRSV infection did not affect the intracellular invasion ability of T. pyogenes. Furthermore, adhesion assays conducted using BRSV G protein-expressing cells and anti-BRSV G antibodies revealed that the increased adhesion of T. pyogenes to cells was mediated by the G protein of BRSV. In addition, immunofluorescence assay revealed the colocalization of BRSV G protein and T. pyogenes. Thus, BRSV infection can potentially lead to bovine respiratory disease complex by promoting the adhesion of T. pyogenes to the infected cells.
AbstractList In cattle, bovine respiratory syncytial virus (BRSV) is associated with secondary bacterial infections; however, the mechanisms of the interaction between BRSV and bacteria are unclear. Trueperella pyogenes (T. pyogenes) causes pneumonia in cattle and is involved in secondary infections following viral infections. In this study, we evaluated the effect of BRSV infection on the adhesion of T. pyogenes to BRSV-infected cells. BRSV infection significantly enhanced the adhesion of T. pyogenes to cells in a multiplicity of infection- and time-dependent manner. The BRSV-mediated change in the adhesion of T. pyogenes was widely observed in various cell types and bacterial strains. The results from the gentamicin protection assay showed that BRSV infection did not affect the intracellular invasion ability of T. pyogenes. Furthermore, adhesion assays conducted using BRSV G protein-expressing cells and anti-BRSV G antibodies revealed that the increased adhesion of T. pyogenes to cells was mediated by the G protein of BRSV. In addition, immunofluorescence assay revealed the colocalization of BRSV G protein and T. pyogenes. Thus, BRSV infection can potentially lead to bovine respiratory disease complex by promoting the adhesion of T. pyogenes to the infected cells.
In cattle, bovine respiratory syncytial virus (BRSV) is associated with secondary bacterial infections; however, the mechanisms of the interaction between BRSV and bacteria are unclear. Trueperella pyogenes ( T. pyogenes ) causes pneumonia in cattle and is involved in secondary infections following viral infections. In this study, we evaluated the effect of BRSV infection on the adhesion of T. pyogenes to BRSV-infected cells. BRSV infection significantly enhanced the adhesion of T. pyogenes to cells in a multiplicity of infection- and time-dependent manner. The BRSV-mediated change in the adhesion of T. pyogenes was widely observed in various cell types and bacterial strains. The results from the gentamicin protection assay showed that BRSV infection did not affect the intracellular invasion ability of T. pyogenes . Furthermore, adhesion assays conducted using BRSV G protein-expressing cells and anti-BRSV G antibodies revealed that the increased adhesion of T. pyogenes to cells was mediated by the G protein of BRSV. In addition, immunofluorescence assay revealed the colocalization of BRSV G protein and T. pyogenes . Thus, BRSV infection can potentially lead to bovine respiratory disease complex by promoting the adhesion of T. pyogenes to the infected cells.
In cattle, bovine respiratory syncytial virus (BRSV) is associated with secondary bacterial infections; however, the mechanisms of the interaction between BRSV and bacteria are unclear. Trueperella pyogenes (T. pyogenes) causes pneumonia in cattle and is involved in secondary infections following viral infections. In this study, we evaluated the effect of BRSV infection on the adhesion of T. pyogenes to BRSV-infected cells. BRSV infection significantly enhanced the adhesion of T. pyogenes to cells in a multiplicity of infection- and time-dependent manner. The BRSV-mediated change in the adhesion of T. pyogenes was widely observed in various cell types and bacterial strains. The results from the gentamicin protection assay showed that BRSV infection did not affect the intracellular invasion ability of T. pyogenes. Furthermore, adhesion assays conducted using BRSV G protein-expressing cells and anti-BRSV G antibodies revealed that the increased adhesion of T. pyogenes to cells was mediated by the G protein of BRSV. In addition, immunofluorescence assay revealed the colocalization of BRSV G protein and T. pyogenes. Thus, BRSV infection can potentially lead to bovine respiratory disease complex by promoting the adhesion of T. pyogenes to the infected cells.In cattle, bovine respiratory syncytial virus (BRSV) is associated with secondary bacterial infections; however, the mechanisms of the interaction between BRSV and bacteria are unclear. Trueperella pyogenes (T. pyogenes) causes pneumonia in cattle and is involved in secondary infections following viral infections. In this study, we evaluated the effect of BRSV infection on the adhesion of T. pyogenes to BRSV-infected cells. BRSV infection significantly enhanced the adhesion of T. pyogenes to cells in a multiplicity of infection- and time-dependent manner. The BRSV-mediated change in the adhesion of T. pyogenes was widely observed in various cell types and bacterial strains. The results from the gentamicin protection assay showed that BRSV infection did not affect the intracellular invasion ability of T. pyogenes. Furthermore, adhesion assays conducted using BRSV G protein-expressing cells and anti-BRSV G antibodies revealed that the increased adhesion of T. pyogenes to cells was mediated by the G protein of BRSV. In addition, immunofluorescence assay revealed the colocalization of BRSV G protein and T. pyogenes. Thus, BRSV infection can potentially lead to bovine respiratory disease complex by promoting the adhesion of T. pyogenes to the infected cells.
ArticleNumber 24-0068
Author TAKAHASHI, Fumiaki
YAMAMOTO, Satomi
MAEDA, Yosuke
OKUMURA, Shiori
KOBAYASHI, Risa
TANABE, Taishi
Author_xml – sequence: 1
  fullname: YAMAMOTO, Satomi
  organization: Laboratory of Veterinary Microbiology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
– sequence: 2
  fullname: OKUMURA, Shiori
  organization: Laboratory of Veterinary Microbiology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
– sequence: 3
  fullname: KOBAYASHI, Risa
  organization: Laboratory of Veterinary Microbiology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
– sequence: 4
  fullname: MAEDA, Yosuke
  organization: Laboratory of Clinical Veterinary Medicine for Large Animal, School of Veterinary Medicine, Kitasato University, Aomori, Japan
– sequence: 5
  fullname: TAKAHASHI, Fumiaki
  organization: Laboratory of Clinical Veterinary Medicine for Large Animal, School of Veterinary Medicine, Kitasato University, Aomori, Japan
– sequence: 6
  fullname: TANABE, Taishi
  organization: Laboratory of Veterinary Microbiology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39111845$$D View this record in MEDLINE/PubMed
BookMark eNp1kcGL1DAYxYOsuLOrN89S8OJhuyZpmrYnWQdXhQUv68lDSNMv0wxtUpN0oP-9KTM76IKXBPL93uN9eVfowjoLCL0l-JbQhn7cH8ZwS1mOMa9foA0pWJVXrGgu0AY3hOcVLfElugphjzEljDev0GXREEJqVm7Qr8_uYCxkHsJkvIzOL1lYrFqikUN2MH4OGdheWgUhiz1kMkap-hFszJzOHv0ME3gYBplNi9uBXTGXqfQSXqOXWg4B3pzua_Tz_svj9lv-8OPr9-3dQ644xTGvOl3rQlLMKSUaN7rU0LYAwLjmrCWYl5Losta8rGTRtcAa0rWsJKTTrWp5cY0-HX2nuR2hUymbl4OYvBmlX4STRvw7saYXO3cQhDBGGabJ4cPJwbvfM4QoRhPWHaQFNwdR4AbzgjJSJvT9M3TvZm_TfqIgtC5xoppEvfs70jnL08cngB4B5V0IHrRQJspo3JrQDIJgsbYr1nYFZWJtN4lunomefP-Db4_4PkS5gzMsfTRqgCNc81WczpPqPFW99AJs8Qc8rcGo
CitedBy_id crossref_primary_10_1080_21505594_2025_2467161
Cites_doi 10.1126/science.aad5872
10.1038/s41579-019-0149-x
10.1177/1040638720975364
10.1016/j.vetmic.2020.108748
10.3390/vaccines9040337
10.1016/j.vetmic.2019.06.010
10.1017/S1466252314000176
10.3390/v9030058
10.1371/journal.ppat.1003057
10.1128/JVI.77.7.4104-4112.2003
10.1016/j.vetmic.2018.04.031
10.2527/jas.2007-0008
10.3168/jds.2018-15501
10.3168/jds.2022-21929
10.1371/journal.ppat.1008234
10.1007/s10482-005-2316-5
10.3390/ijms20112737
10.1051/vetres:2006053
10.1093/femsle/fnv062
10.1016/j.vetimm.2005.04.004
10.1016/j.cvfa.2020.03.005
10.1099/jmm.0.47086-0
10.1186/s42523-022-00167-y
10.2527/2005.8313_supplE37x
10.1016/j.vetmic.2021.109017
10.1164/rccm.201311-2110OC
10.1016/j.vetmic.2012.07.044
ContentType Journal Article
Copyright 2024 by the Japanese Society of Veterinary Science
2024. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 The Japanese Society of Veterinary Science 2024
Copyright_xml – notice: 2024 by the Japanese Society of Veterinary Science
– notice: 2024. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 The Japanese Society of Veterinary Science 2024
DBID AAYXX
CITATION
NPM
7QR
7U9
8FD
FR3
H94
M7N
P64
7X8
5PM
DOI 10.1292/jvms.24-0068
DatabaseName CrossRef
PubMed
Chemoreception Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts

PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Veterinary Medicine
EISSN 1347-7439
EndPage 1075
ExternalDocumentID PMC11442402
39111845
10_1292_jvms_24_0068
article_jvms_86_10_86_24_0068_article_char_en
Genre Journal Article
GroupedDBID 29L
2WC
53G
5GY
ACGFO
ACIWK
ACPRK
ADBBV
ADRAZ
AENEX
AFRAH
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B.T
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
HYE
JSF
JSH
KQ8
M48
M~E
N5S
OK1
P2P
PGMZT
RJT
RNS
RPM
RYR
RZJ
TKC
TR2
VH1
XSB
AAYXX
CITATION
OVT
NPM
7QR
7U9
8FD
FR3
H94
M7N
P64
7X8
5PM
ID FETCH-LOGICAL-c620t-7df8f3a206221f09f5febbeee46f64b1065a1f58f657a3dbe491db4511dfbcb63
IEDL.DBID M48
ISSN 0916-7250
1347-7439
IngestDate Thu Aug 21 18:31:02 EDT 2025
Thu Jul 10 23:12:03 EDT 2025
Mon Jun 30 14:33:36 EDT 2025
Thu Apr 03 07:01:44 EDT 2025
Thu Apr 24 23:00:52 EDT 2025
Tue Jul 01 00:31:13 EDT 2025
Thu Nov 07 14:37:23 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords co-infection
bovine respiratory disease complex
Trueperella pyogenes
bacterial adhesion
bovine respiratory syncytial virus
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/)
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c620t-7df8f3a206221f09f5febbeee46f64b1065a1f58f657a3dbe491db4511dfbcb63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1292/jvms.24-0068
PMID 39111845
PQID 3128502419
PQPubID 2028964
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11442402
proquest_miscellaneous_3090632415
proquest_journals_3128502419
pubmed_primary_39111845
crossref_citationtrail_10_1292_jvms_24_0068
crossref_primary_10_1292_jvms_24_0068
jstage_primary_article_jvms_86_10_86_24_0068_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-00-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo
PublicationTitle Journal of Veterinary Medical Science
PublicationTitleAlternate J. Vet. Med. Sci.
PublicationYear 2024
Publisher JAPANESE SOCIETY OF VETERINARY SCIENCE
Japan Science and Technology Agency
The Japanese Society of Veterinary Science
Publisher_xml – name: JAPANESE SOCIETY OF VETERINARY SCIENCE
– name: Japan Science and Technology Agency
– name: The Japanese Society of Veterinary Science
References 13. Larson RL. 2005. Effect of cattle disease on carcass traits. J Anim Sci 83: E37–E43.
28. Zewde D, Gemeda G, Ashagrie T. 2022. Review on bovine respiratory syncytial virus characteristic, pathogenesis and control methods applied for the disease. Austin J Vet Sci Anim Husb 9: 1103.
8. Dubrovsky SA, Van Eenennaam AL, Aly SS, Karle BM, Rossitto PV, Overton MW, Lehenbauer TW, Fadel JG. 2020. Preweaning cost of bovine respiratory disease (BRD) and cost-benefit of implementation of preventative measures in calves on California dairies: The BRD 10K study. J Dairy Sci 103: 1583–1597.
17. Pardon B, Buczinski S. 2020. Bovine respiratory disease diagnosis: what progress has been made in infectious diagnosis?Vet Clin North Am Food Anim Pract 36: 425–444.
27. Valarcher JF, Taylor G. 2007. Bovine respiratory syncytial virus infection. Vet Res 38: 153–180.
10. Gershwin LJ, Berghaus LJ, Arnold K, Anderson ML, Corbeil LB. 2005. Immune mechanisms of pathogenetic synergy in concurrent bovine pulmonary infection with Haemophilus somnus and bovine respiratory syncytial virus. Vet Immunol Immunopathol 107: 119–130.
2. Avadhanula V, Wang Y, Portner A, Adderson E. 2007. Nontypeable Haemophilus influenzae and Streptococcus pneumoniae bind respiratory syncytial virus glycoprotein. J Med Microbiol 56: 1133–1137.
6. Brealey JC, Sly PD, Young PR, Chappell KJ. 2015. Viral bacterial co-infection of the respiratory tract during early childhood. FEMS Microbiol Lett 362: 362.
14. Mosier D. 2014. Review of BRD pathogenesis: the old and the new. Anim Health Res Rev 15: 166–168.
20. Smith CM, Sandrini S, Datta S, Freestone P, Shafeeq S, Radhakrishnan P, Williams G, Glenn SM, Kuipers OP, Hirst RA, Easton AJ, Andrew PW, O’Callaghan C. 2014. Respiratory syncytial virus increases the virulence of Streptococcus pneumoniae by binding to penicillin binding protein 1a. A new paradigm in respiratory infection. Am J Respir Crit Care Med 190: 196–207.
26. Timsit E, Christensen H, Bareille N, Seegers H, Bisgaard M, Assié S. 2013. Transmission dynamics of Mannheimia haemolytica in newly-received beef bulls at fattening operations. Vet Microbiol 161: 295–304.
11. Jost BH, Billington SJ. 2005. Arcanobacterium pyogenes: molecular pathogenesis of an animal opportunist. Antonie van Leeuwenhoek 88: 87–102.
24. Sudaryatma PE, Saito A, Mekata H, Kubo M, Fahkrajang W, Okabayashi T. 2020. Bovine respiratory syncytial virus decreased Pasteurella multocida adherence by downregulating the expression of intercellular adhesion molecule-1 on the surface of upper respiratory epithelial cells. Vet Microbiol 246: 108748.
3. Battles MB, McLellan JS. 2019. Respiratory syncytial virus entry and how to block it. Nat Rev Microbiol 17: 233–245.
18. Pfeiffer JK, Virgin HW. 2016. Viral immunity. Transkingdom control of viral infection and immunity in the mammalian intestine. Science 351: aad5872–aad5872.
5. Bosch AATM, Biesbroek G, Trzcinski K, Sanders EAM, Bogaert D. 2013. Viral and bacterial interactions in the upper respiratory tract. PLoS Pathog 9: e1003057.
22. Sudaryatma PE, Mekata H, Kubo M, Subangkit M, Goto Y, Okabayashi T. 2019. Co-infection of epithelial cells established from the upper and lower bovine respiratory tract with bovine respiratory syncytial virus and bacteria. Vet Microbiol 235: 80–85.
9. Fahkrajang W, Sudaryatma PE, Mekata H, Hamabe S, Saito A, Okabayashi T. 2021. Bovine respiratory coronavirus enhances bacterial adherence by upregulating expression of cellular receptors on bovine respiratory epithelial cells. Vet Microbiol 255: 109017.
1. Almand EA, Moore MD, Jaykus LA. 2017. Virus-bacteria interactions: an emerging topic in human infection. Viruses 9: 58.
16. Okamoto S, Kawabata S, Nakagawa I, Okuno Y, Goto T, Sano K, Hamada S. 2003. Influenza A virus-infected hosts boost an invasive type of Streptococcus pyogenes infection in mice. J Virol 77: 4104–4112.
23. Sudaryatma PE, Nakamura K, Mekata H, Sekiguchi S, Kubo M, Kobayashi I, Subangkit M, Goto Y, Okabayashi T. 2018. Bovine respiratory syncytial virus infection enhances Pasteurella multocida adherence on respiratory epithelial cells. Vet Microbiol 220: 33–38.
7. Centeno-Martinez RE, Glidden N, Mohan S, Davidson JL, Fernández-Juricic E, Boerman JP, Schoonmaker J, Pillai D, Koziol J, Ault A, Verma MS, Johnson TA. 2022. Identification of bovine respiratory disease through the nasal microbiome. Anim Microbiome 4: 15.
15. Neu U, Mainou BA. 2020. Virus interactions with bacteria: Partners in the infectious dance. PLoS Pathog 16: e1008234.
19. Rzewuska M, Kwiecień E, Chrobak-Chmiel D, Kizerwetter-Świda M, Stefańska I, Gieryńska M. 2019. Pathogenicity and Virulence of Trueperella pyogenes: A Review. Int J Mol Sci 20: 2737.
21. Snowder GD, Van Vleck LD, Cundiff LV, Bennett GL, Koohmaraie M, Dikeman ME. 2007. Bovine respiratory disease in feedlot cattle: phenotypic, environmental, and genetic correlations with growth, carcass, and longissimus muscle palatability traits. J Anim Sci 85: 1885–1892.
25. Taylor JD, Fulton RW, Lehenbauer TW, Step DL, Confer AW. 2010. The epidemiology of bovine respiratory disease: What is the evidence for predisposing factors?Can Vet J 51: 1095–1102.
29. Zhou Y, Shao Z, Dai G, Li X, Xiang Y, Jiang S, Zhang Z, Ren Y, Zhu Z, Fan C, Zhang G. 2023. Pathogenic infection characteristics and risk factors for bovine respiratory disease complex based on the detection of lung pathogens in dead cattle in Northeast China. J Dairy Sci 106: 589–606.
4. Bell RL, Turkington HL, Cosby SL. 2021. The bacterial and viral agents of BRDC: immune evasion and vaccine developments. Vaccines (Basel) 9: 9.
12. Kumagai A, Kawauchi K, Andoh K, Hatama S. 2021. Sequence and unique phylogeny of G genes of bovine respiratory syncytial viruses circulating in Japan. J Vet Diagn Invest 33: 162–166.
22
23
24
25
26
27
28
29
10
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: 9. Fahkrajang W, Sudaryatma PE, Mekata H, Hamabe S, Saito A, Okabayashi T. 2021. Bovine respiratory coronavirus enhances bacterial adherence by upregulating expression of cellular receptors on bovine respiratory epithelial cells. Vet Microbiol 255: 109017.
– reference: 16. Okamoto S, Kawabata S, Nakagawa I, Okuno Y, Goto T, Sano K, Hamada S. 2003. Influenza A virus-infected hosts boost an invasive type of Streptococcus pyogenes infection in mice. J Virol 77: 4104–4112.
– reference: 26. Timsit E, Christensen H, Bareille N, Seegers H, Bisgaard M, Assié S. 2013. Transmission dynamics of Mannheimia haemolytica in newly-received beef bulls at fattening operations. Vet Microbiol 161: 295–304.
– reference: 15. Neu U, Mainou BA. 2020. Virus interactions with bacteria: Partners in the infectious dance. PLoS Pathog 16: e1008234.
– reference: 20. Smith CM, Sandrini S, Datta S, Freestone P, Shafeeq S, Radhakrishnan P, Williams G, Glenn SM, Kuipers OP, Hirst RA, Easton AJ, Andrew PW, O’Callaghan C. 2014. Respiratory syncytial virus increases the virulence of Streptococcus pneumoniae by binding to penicillin binding protein 1a. A new paradigm in respiratory infection. Am J Respir Crit Care Med 190: 196–207.
– reference: 21. Snowder GD, Van Vleck LD, Cundiff LV, Bennett GL, Koohmaraie M, Dikeman ME. 2007. Bovine respiratory disease in feedlot cattle: phenotypic, environmental, and genetic correlations with growth, carcass, and longissimus muscle palatability traits. J Anim Sci 85: 1885–1892.
– reference: 18. Pfeiffer JK, Virgin HW. 2016. Viral immunity. Transkingdom control of viral infection and immunity in the mammalian intestine. Science 351: aad5872–aad5872.
– reference: 6. Brealey JC, Sly PD, Young PR, Chappell KJ. 2015. Viral bacterial co-infection of the respiratory tract during early childhood. FEMS Microbiol Lett 362: 362.
– reference: 28. Zewde D, Gemeda G, Ashagrie T. 2022. Review on bovine respiratory syncytial virus characteristic, pathogenesis and control methods applied for the disease. Austin J Vet Sci Anim Husb 9: 1103.
– reference: 29. Zhou Y, Shao Z, Dai G, Li X, Xiang Y, Jiang S, Zhang Z, Ren Y, Zhu Z, Fan C, Zhang G. 2023. Pathogenic infection characteristics and risk factors for bovine respiratory disease complex based on the detection of lung pathogens in dead cattle in Northeast China. J Dairy Sci 106: 589–606.
– reference: 11. Jost BH, Billington SJ. 2005. Arcanobacterium pyogenes: molecular pathogenesis of an animal opportunist. Antonie van Leeuwenhoek 88: 87–102.
– reference: 10. Gershwin LJ, Berghaus LJ, Arnold K, Anderson ML, Corbeil LB. 2005. Immune mechanisms of pathogenetic synergy in concurrent bovine pulmonary infection with Haemophilus somnus and bovine respiratory syncytial virus. Vet Immunol Immunopathol 107: 119–130.
– reference: 14. Mosier D. 2014. Review of BRD pathogenesis: the old and the new. Anim Health Res Rev 15: 166–168.
– reference: 24. Sudaryatma PE, Saito A, Mekata H, Kubo M, Fahkrajang W, Okabayashi T. 2020. Bovine respiratory syncytial virus decreased Pasteurella multocida adherence by downregulating the expression of intercellular adhesion molecule-1 on the surface of upper respiratory epithelial cells. Vet Microbiol 246: 108748.
– reference: 27. Valarcher JF, Taylor G. 2007. Bovine respiratory syncytial virus infection. Vet Res 38: 153–180.
– reference: 1. Almand EA, Moore MD, Jaykus LA. 2017. Virus-bacteria interactions: an emerging topic in human infection. Viruses 9: 58.
– reference: 22. Sudaryatma PE, Mekata H, Kubo M, Subangkit M, Goto Y, Okabayashi T. 2019. Co-infection of epithelial cells established from the upper and lower bovine respiratory tract with bovine respiratory syncytial virus and bacteria. Vet Microbiol 235: 80–85.
– reference: 5. Bosch AATM, Biesbroek G, Trzcinski K, Sanders EAM, Bogaert D. 2013. Viral and bacterial interactions in the upper respiratory tract. PLoS Pathog 9: e1003057.
– reference: 2. Avadhanula V, Wang Y, Portner A, Adderson E. 2007. Nontypeable Haemophilus influenzae and Streptococcus pneumoniae bind respiratory syncytial virus glycoprotein. J Med Microbiol 56: 1133–1137.
– reference: 4. Bell RL, Turkington HL, Cosby SL. 2021. The bacterial and viral agents of BRDC: immune evasion and vaccine developments. Vaccines (Basel) 9: 9.
– reference: 12. Kumagai A, Kawauchi K, Andoh K, Hatama S. 2021. Sequence and unique phylogeny of G genes of bovine respiratory syncytial viruses circulating in Japan. J Vet Diagn Invest 33: 162–166.
– reference: 17. Pardon B, Buczinski S. 2020. Bovine respiratory disease diagnosis: what progress has been made in infectious diagnosis?Vet Clin North Am Food Anim Pract 36: 425–444.
– reference: 7. Centeno-Martinez RE, Glidden N, Mohan S, Davidson JL, Fernández-Juricic E, Boerman JP, Schoonmaker J, Pillai D, Koziol J, Ault A, Verma MS, Johnson TA. 2022. Identification of bovine respiratory disease through the nasal microbiome. Anim Microbiome 4: 15.
– reference: 25. Taylor JD, Fulton RW, Lehenbauer TW, Step DL, Confer AW. 2010. The epidemiology of bovine respiratory disease: What is the evidence for predisposing factors?Can Vet J 51: 1095–1102.
– reference: 8. Dubrovsky SA, Van Eenennaam AL, Aly SS, Karle BM, Rossitto PV, Overton MW, Lehenbauer TW, Fadel JG. 2020. Preweaning cost of bovine respiratory disease (BRD) and cost-benefit of implementation of preventative measures in calves on California dairies: The BRD 10K study. J Dairy Sci 103: 1583–1597.
– reference: 19. Rzewuska M, Kwiecień E, Chrobak-Chmiel D, Kizerwetter-Świda M, Stefańska I, Gieryńska M. 2019. Pathogenicity and Virulence of Trueperella pyogenes: A Review. Int J Mol Sci 20: 2737.
– reference: 23. Sudaryatma PE, Nakamura K, Mekata H, Sekiguchi S, Kubo M, Kobayashi I, Subangkit M, Goto Y, Okabayashi T. 2018. Bovine respiratory syncytial virus infection enhances Pasteurella multocida adherence on respiratory epithelial cells. Vet Microbiol 220: 33–38.
– reference: 3. Battles MB, McLellan JS. 2019. Respiratory syncytial virus entry and how to block it. Nat Rev Microbiol 17: 233–245.
– reference: 13. Larson RL. 2005. Effect of cattle disease on carcass traits. J Anim Sci 83: E37–E43.
– ident: 18
  doi: 10.1126/science.aad5872
– ident: 3
  doi: 10.1038/s41579-019-0149-x
– ident: 12
  doi: 10.1177/1040638720975364
– ident: 24
  doi: 10.1016/j.vetmic.2020.108748
– ident: 4
  doi: 10.3390/vaccines9040337
– ident: 22
  doi: 10.1016/j.vetmic.2019.06.010
– ident: 14
  doi: 10.1017/S1466252314000176
– ident: 1
  doi: 10.3390/v9030058
– ident: 5
  doi: 10.1371/journal.ppat.1003057
– ident: 16
  doi: 10.1128/JVI.77.7.4104-4112.2003
– ident: 23
  doi: 10.1016/j.vetmic.2018.04.031
– ident: 21
  doi: 10.2527/jas.2007-0008
– ident: 28
– ident: 8
  doi: 10.3168/jds.2018-15501
– ident: 29
  doi: 10.3168/jds.2022-21929
– ident: 15
  doi: 10.1371/journal.ppat.1008234
– ident: 11
  doi: 10.1007/s10482-005-2316-5
– ident: 19
  doi: 10.3390/ijms20112737
– ident: 27
  doi: 10.1051/vetres:2006053
– ident: 6
  doi: 10.1093/femsle/fnv062
– ident: 10
  doi: 10.1016/j.vetimm.2005.04.004
– ident: 17
  doi: 10.1016/j.cvfa.2020.03.005
– ident: 2
  doi: 10.1099/jmm.0.47086-0
– ident: 7
  doi: 10.1186/s42523-022-00167-y
– ident: 13
  doi: 10.2527/2005.8313_supplE37x
– ident: 9
  doi: 10.1016/j.vetmic.2021.109017
– ident: 25
– ident: 20
  doi: 10.1164/rccm.201311-2110OC
– ident: 26
  doi: 10.1016/j.vetmic.2012.07.044
SSID ssj0021469
Score 2.354959
Snippet In cattle, bovine respiratory syncytial virus (BRSV) is associated with secondary bacterial infections; however, the mechanisms of the interaction between BRSV...
In cattle, bovine respiratory syncytial virus (BRSV) is associated with secondary bacterial infections; however, the mechanisms of the interaction between BRSV...
SourceID pubmedcentral
proquest
pubmed
crossref
jstage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1068
SubjectTerms bacterial adhesion
Bacterial infections
bovine respiratory disease complex
bovine respiratory syncytial virus
Cattle
co-infection
Gentamicin
Immunofluorescence
Infections
Multiplicity of infection
Proteins
Respiratory diseases
Respiratory syncytial virus
Trueperella pyogenes
Viral infections
Virology
Title Bovine respiratory syncytial virus enhances the attachment of Trueperella pyogenes to cells
URI https://www.jstage.jst.go.jp/article/jvms/86/10/86_24-0068/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/39111845
https://www.proquest.com/docview/3128502419
https://www.proquest.com/docview/3090632415
https://pubmed.ncbi.nlm.nih.gov/PMC11442402
Volume 86
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Veterinary Medical Science, 2024, Vol.86(10), pp.1068-1075
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RA9FGrSC9F61dqLSPoSVInk8kkAUVULFVZT10peAiZyUy3ZU3WJFvcf-97mw_bUi8SyGXewDDve94XwAsUd0bwQvvoC4S-lLHwU2Wcr7W0gVY514LqnSff1NFUfjmJTjZgmDbaX2Bzo2tH86Sm9fzg96_VO2T4t-veCKl4fX7xszkQ0qdyh1twG3VSTCw6kWM8gaZXd133AuXHqPX7FPjru7fgbkjcn1B10yU9deccTbVTe5MVej2Z8pJ2OrwH271Zyd53dHAfNmy5AzvfKddlXXDLJn0M_QH8-ECPCJbVf4PsrFmhjEVen7OLs3rZMFvOiBoahuYhy9s2NzN6RWSVY8f10i5sTUlTbLGqTklWsrZiFAFoHsL08NPxxyO_H7HgGyV468eFS1yYC66ECBxPXeSs1tZaqZySGv3FKA9clDgVxXlYaCvToNDU06xw2mgVPoLNsirtE2BFaPIoNs7kJpLWRmkYCI2f4bbQPNUevBouNDN9_3EagzHPyA9BTGSEiUzIjDDhwcsRetH13fgH3JsONyNUz3EdVKJoF_578HGVatpQMHiwN2A0G2gvw4MnEdouQerB83EZ2Y5uMi9ttUQYnnLqdB9EHjzuCGA8wUBCHiRXSGMEoJbeV1fKs9m6tTd6p5LiXbv_v_UpbAlO9EzPRHuw2SJZPEPDqdX76DJ8_rq_5ow_2wEeYw
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bovine+respiratory+syncytial+virus+enhances+the+attachment+of+Trueperella+pyogenes+to+cells&rft.jtitle=Journal+of+veterinary+medical+science&rft.au=YAMAMOTO%2C+Satomi&rft.au=OKUMURA%2C+Shiori&rft.au=KOBAYASHI%2C+Risa&rft.au=MAEDA%2C+Yosuke&rft.date=2024&rft.pub=The+Japanese+Society+of+Veterinary+Science&rft.issn=0916-7250&rft.eissn=1347-7439&rft.volume=86&rft.issue=10&rft.spage=1068&rft.epage=1075&rft_id=info:doi/10.1292%2Fjvms.24-0068&rft_id=info%3Apmid%2F39111845&rft.externalDocID=PMC11442402
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-7250&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-7250&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-7250&client=summon