many roles of vision during walking
Vision can improve bipedal upright stability during standing and locomotion. However, during locomotion, vision supports additional behaviors such as gait cycle modulation, navigation, and obstacle avoidance. Here, we investigate how the multiple roles of vision are reflected in the dynamics of trun...
Saved in:
Published in | Experimental brain research Vol. 206; no. 3; pp. 337 - 350 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Berlin/Heidelberg : Springer-Verlag
01.10.2010
Springer-Verlag Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Vision can improve bipedal upright stability during standing and locomotion. However, during locomotion, vision supports additional behaviors such as gait cycle modulation, navigation, and obstacle avoidance. Here, we investigate how the multiple roles of vision are reflected in the dynamics of trunk control as the neural control problem changes from a fixed to a moving base of support. Subjects were presented with either low- or high-amplitude broadband visual stimuli during standing posture or while walking on a treadmill at 1 km/h and 5 km/h. Frequency response functions between visual scene motion (input) and trunk kinematics (output) revealed little or no change in the gain of trunk orientation in the standing posture and walking conditions. However, a dramatic increase in gain was observed in trunk (hip and shoulder) horizontal displacement from posture to locomotion. Such increases in gain may be interpreted as an increased coupling to visual scene motion. However, we believe that the increased gain reflects a decrease in stability due to a change of the control problem from standing to locomotion. Indeed, keeping the body upright with the use of vision during walking is complicated by the additional locomotor processes at work. Unlike during standing, vision plays many roles during locomotion, providing information for upright stability as well as body position relative to the external environment. |
---|---|
Bibliography: | http://dx.doi.org/10.1007/s00221-010-2414-0 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 0014-4819 1432-1106 1432-1106 |
DOI: | 10.1007/s00221-010-2414-0 |