CD133 (Prominin) negative human neural stem cells are clonogenic and tripotent

CD133 (Prominin) is widely used as a marker for the identification and isolation of neural precursor cells from normal brain or tumor tissue. However, the assumption that CD133 is expressed constitutively in neural precursor cells has not been examined. In this study, we demonstrate that CD133 and a...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 4; no. 5; p. e5498
Main Authors Sun, Yirui, Kong, Weiqing, Falk, Anna, Hu, Jin, Zhou, Liangfu, Pollard, Steve, Smith, Austin
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 11.05.2009
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:CD133 (Prominin) is widely used as a marker for the identification and isolation of neural precursor cells from normal brain or tumor tissue. However, the assumption that CD133 is expressed constitutively in neural precursor cells has not been examined. In this study, we demonstrate that CD133 and a second marker CD15 are expressed heterogeneously in uniformly undifferentiated human neural stem (NS) cell cultures. After fractionation by flow cytometry, clonogenic tripotent cells are found in populations negative or positive for either marker. We further show that CD133 is down-regulated at the mRNA level in cells lacking CD133 immunoreactivity. Cell cycle profiling reveals that CD133 negative cells largely reside in G1/G0, while CD133 positive cells are predominantly in S, G2, or M phase. A similar pattern is apparent in mouse NS cell lines. Compared to mouse NS cells, however, human NS cell cultures harbour an increased proportion of CD133 negative cells and display a longer doubling time. This may in part reflect a sub-population of slow- or non-cycling cells amongst human NS cells because we find that around 5% of cells do not take up BrdU over a 14-day labelling period. Non-proliferating NS cells remain undifferentiated and at least some of them are capable of re-entry into the cell cycle and subsequent continuous expansion. The finding that a significant fraction of clonogenic neural stem cells lack the established markers CD133 and CD15, and that some of these cells may be dormant or slow-cycling, has implications for approaches to identify and isolate neural stem cells and brain cancer stem cells. Our data also suggest the possibility that CD133 may be specifically down-regulated during G0/G1, and this should be considered when this marker is used to identify and isolate other tissue and cancer stem cells.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: YS SMP AS. Performed the experiments: YS WK AF. Analyzed the data: YS WK AF JH SMP AS. Contributed reagents/materials/analysis tools: WK JH LZ AS. Wrote the paper: YS.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0005498