Quercetin attenuates neuronal cells damage in a middle cerebral artery occlusion animal model
Cerebral ischemia is a neurological disorder with high mortality. Quercetin is a flavonoid compound that is abundant in vegetables and fruits. It exerts anti-inflammatory and anti-apoptotic effects. This study investigated the neuroprotective effects of quercetin in focal cerebral ischemia. Male Spr...
Saved in:
Published in | Journal of Veterinary Medical Science Vol. 80; no. 4; pp. 676 - 683 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Japan
JAPANESE SOCIETY OF VETERINARY SCIENCE
01.04.2018
Japan Science and Technology Agency The Japanese Society of Veterinary Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Cerebral ischemia is a neurological disorder with high mortality. Quercetin is a flavonoid compound that is abundant in vegetables and fruits. It exerts anti-inflammatory and anti-apoptotic effects. This study investigated the neuroprotective effects of quercetin in focal cerebral ischemia. Male Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) to induce focal cerebral ischemia. Quercetin or vehicle was injected 30 min before the onset of ischemia. A neurological function test, brain edema measurement, and 2,3,5-triphenyltetrazolium chloride staining were performed to elucidate the neuroprotective effects of quercetin. Western blot analysis was performed to observe caspase-3 and poly ADP-ribose polymerase (PARP) protein expression. MCAO leads to severe neuronal deficits and increases brain edema and infarct volume. However, quercetin administration attenuated the MCAO-induced neuronal deficits and neuronal degeneration. We observed increases in caspase-3 and PARP protein levels in MCAO-operated animals injected with vehicle, whereas quercetin administration attenuated these increases in MCAO injury. This study reveals the neuroprotective effect of quercetin in an MCAO-induced animal model and demonstrates the regulation of caspase-3 and PARP expression by quercetin treatment. These results suggest that quercetin exerts a neuroprotective effect through preventing the MCAO-induced activation of apoptotic pathways affecting caspase-3 and PARP expression. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0916-7250 1347-7439 1347-7439 |
DOI: | 10.1292/jvms.17-0693 |