Intraarticular Expression of Biologically Active Interleukin 1-Receptor- Antagonist Protein by Ex vivo Gene Transfer

Gene therapy offers a radical different approach to the treatment of arthritis. Here we have demonstrated that two marker genes (lacZ and neo) and cDNA coding for a potentially therapeutic protein (human interleukin 1-receptor-antagonist protein; IRAP or IL-1ra) can be delivered, by ex vivo techniqu...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 90; no. 22; pp. 10764 - 10768
Main Authors Bandara, G., Mueller, G. M., Galea-Lauri, J., Tindal, M. H., Georgescu, H. I., Suchanek, M. K., Hung, G. L., Glorioso, J. C., Robbins, P. D., Evans, C. H.
Format Journal Article
LanguageEnglish
Published Washington, DC National Academy of Sciences of the United States of America 15.11.1993
National Acad Sciences
National Academy of Sciences
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Gene therapy offers a radical different approach to the treatment of arthritis. Here we have demonstrated that two marker genes (lacZ and neo) and cDNA coding for a potentially therapeutic protein (human interleukin 1-receptor-antagonist protein; IRAP or IL-1ra) can be delivered, by ex vivo techniques, to the synovial lining of joints; intraarticular expression of IRAP inhibited intraarticular responses to interleukin 1. To achieve this, lapine synoviocytes were first transduced in culture by retroviral infection. The genetically modified synovial cells were then transplanted by intraarticular injection into the knee joints of rabbits, where they efficiently colonized the synovium. Assay of joint lavages confirmed the in vivo expression of biologically active human IRAP. With allografted cells, IRAP expression was lost by 12 days after transfer. In contrast, autografted synoviocytes continued to express IRAP for ≈5 weeks. Knee joints expressing human IRAP were protected from the leukocytosis that otherwise follows the intraarticular injection of recombinant human interleukin 1β. Thus, we report the intraarticular expression and activity of a potentially therapeutic protein by gene-transfer technology; these experiments demonstrate the feasibility of treating arthritis and other joint disorders with gene therapy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.90.22.10764