Four-dimensional motility tracking of biological cells by digital holographic microscopy
Three-dimensional profiling and tracking by digital holography microscopy (DHM) provide label-free and quantitative analysis of the characteristics and dynamic processes of objects, since DHM can record real-time data for microscale objects and produce a single hologram containing all the informatio...
Saved in:
Published in | Journal of biomedical optics Vol. 19; no. 4; p. 045001 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Society of Photo-Optical Instrumentation Engineers
01.04.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Three-dimensional profiling and tracking by digital holography microscopy (DHM) provide label-free and quantitative analysis of the characteristics and dynamic processes of objects, since DHM can record real-time data for microscale objects and produce a single hologram containing all the information about their three-dimensional structures. Here, we have utilized DHM to visualize suspended microspheres and microfibers in three dimensions, and record the four-dimensional trajectories of free-swimming cells in the absence of mechanical focus adjustment. The displacement of microfibers due to interactions with cells in three spatial dimensions has been measured as a function of time at subsecond and micrometer levels in a direct and straightforward manner. It has thus been shown that DHM is a highly efficient and versatile means for quantitative tracking and analysis of cell motility. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1083-3668 1560-2281 1560-2281 |
DOI: | 10.1117/1.JBO.19.4.045001 |