Mechanisms of fat‐induced gastric inhibitory polypeptide/glucose‐dependent insulinotropic polypeptide secretion from K cells

Gastric inhibitory polypeptide/glucose‐dependent insulinotropic polypeptide (GIP) is one of the incretins, which are gastrointestinal hormones released in response to nutrient ingestion and potentiate glucose‐stimulated insulin secretion. Single fat ingestion stimulates GIP secretion from enteroendo...

Full description

Saved in:
Bibliographic Details
Published inJournal of diabetes investigation Vol. 7; no. S1; pp. 20 - 26
Main Authors Yamane, Shunsuke, Harada, Norio, Inagaki, Nobuya
Format Journal Article
LanguageEnglish
Published Japan John Wiley & Sons, Inc 01.04.2016
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Gastric inhibitory polypeptide/glucose‐dependent insulinotropic polypeptide (GIP) is one of the incretins, which are gastrointestinal hormones released in response to nutrient ingestion and potentiate glucose‐stimulated insulin secretion. Single fat ingestion stimulates GIP secretion from enteroendocrine K cells; chronic high‐fat diet (HFD) loading enhances GIP secretion and induces obesity in mice in a GIP‐dependent manner. However, the mechanisms of GIP secretion from K cells in response to fat ingestion and GIP hypersecretion in HFD‐induced obesity are not well understood. We generated GIP‐green fluorescent protein knock‐in (GIPgfp/+) mice, in which K cells are labeled by enhanced GIP‐green fluorescent protein. Microarray analysis of isolated K cells from GIPgfp/+ mice showed that both fatty acid‐binding protein 5 and G protein‐coupled receptor 120 are highly expressed in K cells. Single oral administration of fat resulted in significant reduction of GIP secretion in both fatty acid‐binding protein 5‐ and G protein‐coupled receptor 120‐deficient mice, showing that fatty acid‐binding protein 5 and G protein‐coupled receptor 120 are involved in acute fat‐induced GIP secretion. Furthermore, the transcriptional factor, regulatory factor X6 (Rfx6), is highly expressed in K cells. In vitro experiments using the mouse enteroendocrine cell line, STC‐1, showed that GIP messenger ribonucleic acid levels are upregulated by Rfx6. Expression levels of Rfx6 messenger ribonucleic acid as well as that of GIP messenger ribonucleic acid were augmented in the K cells of HFD‐induced obese mice, in which GIP content in the small intestine is increased compared with that in lean mice fed a control diet. These results suggest that Rfx6 is involved in hypersecretion of GIP in HFD‐induced obese conditions by increasing GIP gene expression. The mechanisms of fat‐induced GIP secretion from K cells.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-3
ObjectType-Review-1
This article is based on the presentations given by the authors at a symposium, Incretin 2015, July 29–31, 2015, Vancouver, BC, Canada.
ISSN:2040-1116
2040-1124
DOI:10.1111/jdi.12467