Impaired angiogenesis, delayed wound healing and retarded tumor growth in perlecan heparan sulfate-deficient mice

Perlecan, a modular proteoglycan carrying primary heparan sulfate (HS) side chains, is a major component of blood vessel basement membranes. It sequesters growth factors such as fibroblast growth factor 2 (FGF-2) and regulates the ligand-receptor interactions on the cell surface, and thus it has bee...

Full description

Saved in:
Bibliographic Details
Published inCancer research (Chicago, Ill.) Vol. 64; no. 14; pp. 4699 - 4702
Main Authors ZHONGJUN ZHOU, JIANMING WANG, RENHAI CAO, MORITA, Hiroyuki, SOININEN, Raija, KUI MING CHAN, LIU, Baohua, CAO, Yihai, TRYGGVASON, Karl
Format Journal Article
LanguageEnglish
Published Philadelphia, PA American Association for Cancer Research 15.07.2004
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Perlecan, a modular proteoglycan carrying primary heparan sulfate (HS) side chains, is a major component of blood vessel basement membranes. It sequesters growth factors such as fibroblast growth factor 2 (FGF-2) and regulates the ligand-receptor interactions on the cell surface, and thus it has been implicated in the control of angiogenesis. Both stimulatory and inhibitory effects of perlecan on FGF-2 signaling have been reported. To understand the in vivo function of HS carried by perlecan, the perlecan gene heparan sulfate proteoglycan 2 (Hspg2) was mutated in mouse by gene targeting. The HS at the NH(2) terminus of perlecan was removed while the core protein remained intact. Perlecan HS-deficient (Hspg2(Delta3/Delta3)) mice survived embryonic development and were apparently healthy as adults. However, mutant mice exhibited significantly delayed wound healing, retarded FGF-2-induced tumor growth, and defective angiogenesis. In the mouse corneal angiogenesis model, FGF-2-induced neovascularization was significantly impaired in Hspg2(Delta3/Delta3) mutant mice. Our results suggest that HS in perlecan positively regulates the angiogenesis in vivo.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0008-5472
1538-7445
DOI:10.1158/0008-5472.CAN-04-0810