Improving oxidation stability of 2D MXenes: synthesis, storage media, and conditions

Understanding and preventing oxidative degradation of MXene suspensions is essential for fostering fundamental academic studies and facilitating widespread industrial applications. Owing to their outstanding electrical, electrochemical, optoelectronic, and mechanical properties, MXenes, an emerging...

Full description

Saved in:
Bibliographic Details
Published inNano convergence Vol. 8; no. 1; p. 9
Main Authors Iqbal, Aamir, Hong, Junpyo, Ko, Tae Yun, Koo, Chong Min
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 16.03.2021
Springer Nature B.V
SpringerOpen
나노기술연구협의회
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Understanding and preventing oxidative degradation of MXene suspensions is essential for fostering fundamental academic studies and facilitating widespread industrial applications. Owing to their outstanding electrical, electrochemical, optoelectronic, and mechanical properties, MXenes, an emerging class of two-dimensional (2D) nanomaterials, show promising state-of-the-art performances in various applications including electromagnetic interference (EMI) shielding, terahertz shielding, electrochemical energy storage, triboelectric nanogenerators, thermal heaters, light-emitting diodes (LEDs), optoelectronics, and sensors. However, MXene synthesis using harsh chemical etching causes many defects or vacancies on the surface of the synthesized MXene flakes. Defective sites are vulnerable to oxidative degradation reactions with water and/or oxygen, which deteriorate the intrinsic properties of MXenes. In this review, we demonstrate the nature of oxidative degradation of MXenes and highlight the recent advancements in controlling the oxidation kinetics of MXenes with several promising strategic approaches, including careful control of the quality of the parent MAX phase, chemical etching conditions, defect passivation, dispersion medium, storage conditions, and polymer composites.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:2196-5404
2196-5404
DOI:10.1186/s40580-021-00259-6