The relationship between whole bone stiffness and strength is age and sex dependent

Accurately estimating whole bone strength is critical for identifying individuals that may benefit from prophylactic treatments aimed at reducing fracture risk. Strength is often estimated from stiffness, but it is not known whether the relationship between stiffness and strength varies with age and...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomechanics Vol. 83; pp. 125 - 133
Main Authors Patton, Daniella M., Bigelow, Erin M.R., Schlecht, Stephen H., Kohn, David H., Bredbenner, Todd L., Jepsen, Karl J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 23.01.2019
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Accurately estimating whole bone strength is critical for identifying individuals that may benefit from prophylactic treatments aimed at reducing fracture risk. Strength is often estimated from stiffness, but it is not known whether the relationship between stiffness and strength varies with age and sex. Cadaveric proximal femurs (44 Male: 18–78 years; 40 Female: 24–95 years) and radial (36 Male: 18–89 years; 19 Female: 24–95 years) and femoral diaphyses (34 Male: 18–89 years; 19 Female: 24–95 years) were loaded to failure to evaluate how the stiffness-strength relationship varies with age and sex. Strength correlated significantly with stiffness at all sites and for both sexes, as expected. However, females exhibited significantly less strength for the proximal femur (58% difference, p < 0.001). Multivariate regressions revealed that stiffness, age and PYD were significant negative independent predictors of strength for the proximal femur (Age: M: p = 0.005, F: p < 0.001, PYD: M: p = 0.022, F: p = 0.025), radial diaphysis (Age: M = 0.055, PYD: F = 0.024), and femoral diaphysis (Age: M: p = 0.014, F: p = 0.097, PYD: M: p = 0.003, F: p = 0.091). These results indicated that older bones tended to be significantly weaker for a given stiffness than younger bones. These results suggested that human bones exhibit diminishing strength relative to stiffness with aging and with decreasing PYD. Incorporating these age- and sex-specific factors may help to improve the accuracy of strength estimates.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9290
1873-2380
DOI:10.1016/j.jbiomech.2018.11.030