Rapid efficient synthesis and characterization of silver, gold, and bimetallic nanoparticles from the medicinal plant Plumbago zeylanica and their application in biofilm control

Nanoparticles (NPs) have gained significance in medical fields due to their high surface-area-to-volume ratio. In this study, we synthesized NPs from a medicinally important plant - Plumbago zeylanica. Aqueous root extract of P. zeylanica (PZRE) was analyzed for the presence of flavonoids, sugars, a...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of nanomedicine Vol. 9; no. Issue 1; pp. 2635 - 2653
Main Authors Salunke, Gayatri R, Ghosh, Sougata, Santosh Kumar, R J, Khade, Samiksha, Vashisth, Priya, Kale, Trupti, Chopade, Snehal, Pruthi, Vikas, Kundu, Gopal, Bellare, Jayesh R, Chopade, Balu A
Format Journal Article
LanguageEnglish
Published New Zealand Dove Medical Press Limited 01.01.2014
Taylor & Francis Ltd
Dove Press
Dove Medical Press
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Nanoparticles (NPs) have gained significance in medical fields due to their high surface-area-to-volume ratio. In this study, we synthesized NPs from a medicinally important plant - Plumbago zeylanica. Aqueous root extract of P. zeylanica (PZRE) was analyzed for the presence of flavonoids, sugars, and organic acids using high-performance thin-layer chromatography (HPTLC), gas chromatography-time of flight-mass spectrometry (GC-TOF-MS), and biochemical methods. The silver NPs (AgNPs), gold NPs (AuNPs), and bimetallic NPs (AgAuNPs) were synthesized from root extract and characterized using ultraviolet-visible spectra, X-ray diffraction (XRD), energy-dispersive spectrometry (EDS), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The effects of these NPs on Acinetobacter baumannii, Staphylococcus aureus, and Escherichia coli biofilms were studied using quantitative biofilm inhibition and disruption assays, as well as using fluorescence, scanning electron microscopy, and atomic force microscopy. PZRE showed the presence of phenolics, such as plumbagin, and flavonoids, in addition to citric acid, sucrose, glucose, fructose, and starch, using HPTLC, GC-TOF-MS, and quantitative analysis. Bioreduction of silver nitrate (AgNO₃) and chloroauric acid (HAuCl₄) were confirmed at absorbances of 440 nm (AgNPs), 570 nm (AuNPs), and 540 nm (AgAuNPs), respectively. The maximum rate of synthesis at 50°C was achieved with 5 mM AgNO₃ within 4.5 hours for AgNPs; and with 0.7 mM HAuCl4 within 5 hours for AuNPs. The synthesis of AgAuNPs, which completed within 90 minutes with 0.7 mM AgNO₃ and HAuCl₄, was found to be the fastest. Fourier-transform infrared spectroscopy confirmed bioreduction, while EDS and XRD patterns confirmed purity and the crystalline nature of the NPs, respectively. TEM micrographs and DLS showed about 60 nm monodispersed Ag nanospheres, 20-30 nm Au nanospheres adhering to form Au nanotriangles, and about 90 nm hexagonal blunt-ended AgAuNPs. These NPs also showed antimicrobial and antibiofilm activity against E. coli, A. baumannii, S. aureus, and a mixed culture of A. baumannii and S. aureus. AgNPs inhibited biofilm in the range of 96%-99% and AgAuNPs from 93% to 98% in single-culture biofilms. AuNPs also showed biofilm inhibition, with the highest of 98% in S. aureus. AgNPs also showed good biofilm disruption, with the highest of 88% in A. baumannii. This is the first report on rapid and efficient synthesis of AgNPs, AuNPs and AgAuNPs from P. zeylanica and their effect on quantitative inhibition and disruption of bacterial biofilms.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1178-2013
1176-9114
1178-2013
DOI:10.2147/IJN.S59834