Polyamines Regulate the Expression of Ornithine Decarboxylase Antizyme in vitro by Inducing Ribosomal Frame-Shifting

We provide here an example of a mammalian cellular gene expressed by frame-shifting. Conventional reading of the sequence of ornithine decarboxylase-antizyme mRNA (a protein that modulates the rate of ornithine decarboxylase degradation) results in premature termination at an in-frame termination co...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 91; no. 9; pp. 3959 - 3963
Main Authors Rom, Eran, Kahana, Chaim
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences of the United States of America 26.04.1994
National Acad Sciences
National Academy of Sciences
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We provide here an example of a mammalian cellular gene expressed by frame-shifting. Conventional reading of the sequence of ornithine decarboxylase-antizyme mRNA (a protein that modulates the rate of ornithine decarboxylase degradation) results in premature termination at an in-frame termination codon (stop-1), located shortly after the initiation codon. By translating, in vitro in reticulocyte lysate, antizyme mRNA with a full coding capacity and various mutants derived from it, we demonstrate that antizyme expression requires that ribosomes shift from the first open reading frame (termed ORF0) to a second +1 open reading frame (ORF1). Our studies show that this frame-shifting, which occurs at maximal efficiency of ≈20%, is stimulated by polyamines and requires the functional integrity of the stop codon (stop-1) of ORF0. By introducing in-frame deletions, we have shown that an 87-nt segment surrounding stop-1 enhances frame-shifting efficiency, whereas the 6 nt located just upstream to stop-1 are absolutely essential for this process. Because this segment does not contain sequences that were previously characterized as shifty segments, our results suggest that another mechanism of frame-shifting is involved in mediating antizyme expression.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.91.9.3959