Multifunctional Perovskite Photodetectors: From Molecular-Scale Crystal Structure Design to Micro/Nano-scale Morphology Manipulation

Highlights Multidimensional detection of intensity, wavelength, polarization, and angle of the incidence light significantly accelerates the development of optical information technology and artificial intelligence fields. The first comprehensive overview of the advancement of multifunctional photod...

Full description

Saved in:
Bibliographic Details
Published inNano-micro letters Vol. 15; no. 1; pp. 187 - 30
Main Authors Zhao, Yingjie, Yin, Xing, Li, Pengwei, Ren, Ziqiu, Gu, Zhenkun, Zhang, Yiqiang, Song, Yanlin
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.12.2023
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Highlights Multidimensional detection of intensity, wavelength, polarization, and angle of the incidence light significantly accelerates the development of optical information technology and artificial intelligence fields. The first comprehensive overview of the advancement of multifunctional photodetectors for perovskite semiconductors ranging from polarized light detection, spectral detection, and angle-sensing detection to self-powered detection is summarized. The existing problems and perspectives are discussed which can inspire more researchers to rationally design new perovskite materials and micro/nano-structure for high-performance multifunctional photodetectors. Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implementation of multifunctional detectors is based on the physical combination of optical lenses, gratings, and multiple photodetectors, the large size and its complex structure hinder the miniaturization, lightweight, and integration of devices. In contrast, perovskite materials have achieved remarkable progress in the field of multifunctional photodetectors due to their diverse crystal structures, simple morphology manipulation, and excellent optoelectronic properties. In this review, we first overview the crystal structures and morphology manipulation techniques of perovskite materials and then summarize the working mechanism and performance parameters of multifunctional photodetectors. Furthermore, the fabrication strategies of multifunctional perovskite photodetectors and their advancements are highlighted, including polarized light detection, spectral detection, angle-sensing detection, and self-powered detection. Finally, the existing problems of multifunctional detectors and the perspectives of their future development are presented.
AbstractList Highlights Multidimensional detection of intensity, wavelength, polarization, and angle of the incidence light significantly accelerates the development of optical information technology and artificial intelligence fields. The first comprehensive overview of the advancement of multifunctional photodetectors for perovskite semiconductors ranging from polarized light detection, spectral detection, and angle-sensing detection to self-powered detection is summarized. The existing problems and perspectives are discussed which can inspire more researchers to rationally design new perovskite materials and micro/nano-structure for high-performance multifunctional photodetectors. Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implementation of multifunctional detectors is based on the physical combination of optical lenses, gratings, and multiple photodetectors, the large size and its complex structure hinder the miniaturization, lightweight, and integration of devices. In contrast, perovskite materials have achieved remarkable progress in the field of multifunctional photodetectors due to their diverse crystal structures, simple morphology manipulation, and excellent optoelectronic properties. In this review, we first overview the crystal structures and morphology manipulation techniques of perovskite materials and then summarize the working mechanism and performance parameters of multifunctional photodetectors. Furthermore, the fabrication strategies of multifunctional perovskite photodetectors and their advancements are highlighted, including polarized light detection, spectral detection, angle-sensing detection, and self-powered detection. Finally, the existing problems of multifunctional detectors and the perspectives of their future development are presented.
Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implementation of multifunctional detectors is based on the physical combination of optical lenses, gratings, and multiple photodetectors, the large size and its complex structure hinder the miniaturization, lightweight, and integration of devices. In contrast, perovskite materials have achieved remarkable progress in the field of multifunctional photodetectors due to their diverse crystal structures, simple morphology manipulation, and excellent optoelectronic properties. In this review, we first overview the crystal structures and morphology manipulation techniques of perovskite materials and then summarize the working mechanism and performance parameters of multifunctional photodetectors. Furthermore, the fabrication strategies of multifunctional perovskite photodetectors and their advancements are highlighted, including polarized light detection, spectral detection, angle-sensing detection, and self-powered detection. Finally, the existing problems of multifunctional detectors and the perspectives of their future development are presented.Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implementation of multifunctional detectors is based on the physical combination of optical lenses, gratings, and multiple photodetectors, the large size and its complex structure hinder the miniaturization, lightweight, and integration of devices. In contrast, perovskite materials have achieved remarkable progress in the field of multifunctional photodetectors due to their diverse crystal structures, simple morphology manipulation, and excellent optoelectronic properties. In this review, we first overview the crystal structures and morphology manipulation techniques of perovskite materials and then summarize the working mechanism and performance parameters of multifunctional photodetectors. Furthermore, the fabrication strategies of multifunctional perovskite photodetectors and their advancements are highlighted, including polarized light detection, spectral detection, angle-sensing detection, and self-powered detection. Finally, the existing problems of multifunctional detectors and the perspectives of their future development are presented.
Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implementation of multifunctional detectors is based on the physical combination of optical lenses, gratings, and multiple photodetectors, the large size and its complex structure hinder the miniaturization, lightweight, and integration of devices. In contrast, perovskite materials have achieved remarkable progress in the field of multifunctional photodetectors due to their diverse crystal structures, simple morphology manipulation, and excellent optoelectronic properties. In this review, we first overview the crystal structures and morphology manipulation techniques of perovskite materials and then summarize the working mechanism and performance parameters of multifunctional photodetectors. Furthermore, the fabrication strategies of multifunctional perovskite photodetectors and their advancements are highlighted, including polarized light detection, spectral detection, angle-sensing detection, and self-powered detection. Finally, the existing problems of multifunctional detectors and the perspectives of their future development are presented.
Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implementation of multifunctional detectors is based on the physical combination of optical lenses, gratings, and multiple photodetectors, the large size and its complex structure hinder the miniaturization, lightweight, and integration of devices. In contrast, perovskite materials have achieved remarkable progress in the field of multifunctional photodetectors due to their diverse crystal structures, simple morphology manipulation, and excellent optoelectronic properties. In this review, we first overview the crystal structures and morphology manipulation techniques of perovskite materials and then summarize the working mechanism and performance parameters of multifunctional photodetectors. Furthermore, the fabrication strategies of multifunctional perovskite photodetectors and their advancements are highlighted, including polarized light detection, spectral detection, angle-sensing detection, and self-powered detection. Finally, the existing problems of multifunctional detectors and the perspectives of their future development are presented. "Image missing"
Highlights Multidimensional detection of intensity, wavelength, polarization, and angle of the incidence light significantly accelerates the development of optical information technology and artificial intelligence fields. The first comprehensive overview of the advancement of multifunctional photodetectors for perovskite semiconductors ranging from polarized light detection, spectral detection, and angle-sensing detection to self-powered detection is summarized. The existing problems and perspectives are discussed which can inspire more researchers to rationally design new perovskite materials and micro/nano-structure for high-performance multifunctional photodetectors.
HighlightsMultidimensional detection of intensity, wavelength, polarization, and angle of the incidence light significantly accelerates the development of optical information technology and artificial intelligence fields.The first comprehensive overview of the advancement of multifunctional photodetectors for perovskite semiconductors ranging from polarized light detection, spectral detection, and angle-sensing detection to self-powered detection is summarized.The existing problems and perspectives are discussed which can inspire more researchers to rationally design new perovskite materials and micro/nano-structure for high-performance multifunctional photodetectors.Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implementation of multifunctional detectors is based on the physical combination of optical lenses, gratings, and multiple photodetectors, the large size and its complex structure hinder the miniaturization, lightweight, and integration of devices. In contrast, perovskite materials have achieved remarkable progress in the field of multifunctional photodetectors due to their diverse crystal structures, simple morphology manipulation, and excellent optoelectronic properties. In this review, we first overview the crystal structures and morphology manipulation techniques of perovskite materials and then summarize the working mechanism and performance parameters of multifunctional photodetectors. Furthermore, the fabrication strategies of multifunctional perovskite photodetectors and their advancements are highlighted, including polarized light detection, spectral detection, angle-sensing detection, and self-powered detection. Finally, the existing problems of multifunctional detectors and the perspectives of their future development are presented.
Multidimensional detection of intensity, wavelength, polarization, and angle of the incidence light significantly accelerates the development of optical information technology and artificial intelligence fields. The first comprehensive overview of the advancement of multifunctional photodetectors for perovskite semiconductors ranging from polarized light detection, spectral detection, and angle-sensing detection to self-powered detection is summarized. The existing problems and perspectives are discussed which can inspire more researchers to rationally design new perovskite materials and micro/nano-structure for high-performance multifunctional photodetectors. Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implementation of multifunctional detectors is based on the physical combination of optical lenses, gratings, and multiple photodetectors, the large size and its complex structure hinder the miniaturization, lightweight, and integration of devices. In contrast, perovskite materials have achieved remarkable progress in the field of multifunctional photodetectors due to their diverse crystal structures, simple morphology manipulation, and excellent optoelectronic properties. In this review, we first overview the crystal structures and morphology manipulation techniques of perovskite materials and then summarize the working mechanism and performance parameters of multifunctional photodetectors. Furthermore, the fabrication strategies of multifunctional perovskite photodetectors and their advancements are highlighted, including polarized light detection, spectral detection, angle-sensing detection, and self-powered detection. Finally, the existing problems of multifunctional detectors and the perspectives of their future development are presented.
ArticleNumber 187
Author Zhao, Yingjie
Ren, Ziqiu
Yin, Xing
Gu, Zhenkun
Song, Yanlin
Li, Pengwei
Zhang, Yiqiang
Author_xml – sequence: 1
  givenname: Yingjie
  surname: Zhao
  fullname: Zhao, Yingjie
  organization: College of Chemistry, Zhengzhou University
– sequence: 2
  givenname: Xing
  surname: Yin
  fullname: Yin, Xing
  organization: College of Chemistry, Zhengzhou University
– sequence: 3
  givenname: Pengwei
  surname: Li
  fullname: Li, Pengwei
  organization: College of Chemistry, Zhengzhou University
– sequence: 4
  givenname: Ziqiu
  surname: Ren
  fullname: Ren, Ziqiu
  organization: Henan Institute of Advanced Technology, Zhengzhou University
– sequence: 5
  givenname: Zhenkun
  surname: Gu
  fullname: Gu, Zhenkun
  email: guzhenkun@zzu.edu.cn
  organization: Henan Institute of Advanced Technology, Zhengzhou University
– sequence: 6
  givenname: Yiqiang
  surname: Zhang
  fullname: Zhang, Yiqiang
  organization: College of Chemistry, Zhengzhou University
– sequence: 7
  givenname: Yanlin
  surname: Song
  fullname: Song, Yanlin
  email: ylsong@iccas.ac.cn
  organization: College of Chemistry, Zhengzhou University, Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37515723$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1DAUhSNUREvpC7BAkdiwCfX1T5ywQWigUKkDlQpry3FuZlw88WA7lWbPg-OZaYF20ZUt-5zPRz73eXEw-hGL4iWQt0CIPI2cNJRUhLKKANRQbZ4URxQEqYQQcJD3DKCqJakPi5MYbUcE5ZJKwZ8Vh0wKEJKyo-L3fHLJDtNokvWjduUlBn8Tf9qE5eXSJ99jQpN8iO_Ks-BX5dw7NJPToboy2mE5C5uYsu8qhcmkKWD5EaNdjGXy5dya4E-_6tFXcSee-7BeeucXm3KuR7vOnO2zL4qng3YRT27X4-LH2afvsy_VxbfP57MPF5WpgaaK6s5ogVQPHDmImoumbaXRIJFLXtOaaWhJL5DpDkzX9bpjPRt63XaG9C1nx8X5ntt7fa3Wwa502Civrdod-LBQOiRrHCpgdID8nUggv1b3mqFsOskMNLLnlGXW-z1rPXUr7A2OKWh3D3r_ZrRLtfA3CghrJOGQCW9uCcH_mjAmtbLRoHN6RD9FRRvOSUsYyCx9_UB67aeQ69qqmlY0gjGRVa_-j_Q3y13bWdDsBbmWGAMOyti0ayAntC5HU9vZUvvZUnm21G621CZb6QPrHf1RE9ubYhaPCwz_Yj_i-gM4duSK
CitedBy_id crossref_primary_10_1021_acsanm_4c03567
crossref_primary_10_1002_adfm_202402166
crossref_primary_10_1002_smll_202402668
crossref_primary_10_1002_advs_202407634
crossref_primary_10_1002_adfm_202501020
crossref_primary_10_1039_D4TC02994A
crossref_primary_10_1016_j_cclet_2024_109530
crossref_primary_10_1007_s42247_024_00834_7
crossref_primary_10_1002_adfm_202418968
crossref_primary_10_1007_s42247_023_00575_z
crossref_primary_10_1016_j_snr_2024_100201
crossref_primary_10_1021_acs_cgd_4c00676
crossref_primary_10_1016_j_solener_2024_113205
crossref_primary_10_1002_smtd_202400709
crossref_primary_10_1016_j_nanoen_2024_109802
crossref_primary_10_1016_j_optmat_2024_115997
crossref_primary_10_1002_advs_202414430
crossref_primary_10_1021_acsami_4c09719
crossref_primary_10_1088_1361_6528_adae16
crossref_primary_10_1002_adma_202414649
crossref_primary_10_1038_s41377_024_01636_6
crossref_primary_10_1021_acsami_4c17285
crossref_primary_10_1021_acs_chemmater_3c02521
crossref_primary_10_1002_adfm_202404697
crossref_primary_10_1002_lpor_202400564
crossref_primary_10_1002_adma_202404740
crossref_primary_10_1002_admt_202401126
crossref_primary_10_1364_OL_533658
crossref_primary_10_1007_s40820_024_01465_7
crossref_primary_10_1016_j_mtelec_2025_100138
crossref_primary_10_1016_j_jmst_2025_01_035
crossref_primary_10_1016_j_optmat_2023_114652
crossref_primary_10_1002_anie_202413726
crossref_primary_10_1088_1361_6528_ad568e
crossref_primary_10_1002_inf2_12602
crossref_primary_10_1002_ange_202413726
crossref_primary_10_1007_s40820_024_01501_6
crossref_primary_10_1039_D4TC01305K
crossref_primary_10_1039_D4QI02090A
crossref_primary_10_1007_s40820_024_01565_4
crossref_primary_10_1088_1674_1056_ad23d7
crossref_primary_10_1021_acsphotonics_4c01860
crossref_primary_10_1364_PRJ_520675
crossref_primary_10_1002_adom_202401544
crossref_primary_10_1021_jacs_4c14899
crossref_primary_10_1039_D4TA02884H
Cites_doi 10.1002/adma.201808088
10.1038/nature25989
10.1021/acsami.7b02213
10.1126/science.aaa27
10.1002/smll.201902890
10.1002/adma.201907280
10.1126/science.abc853
10.1038/s41467-022-32309-w
10.1038/s41467-017-00788-x
10.1007/s11947-010-0411-8
10.1002/adfm.202214094
10.1364/OE.424443
10.1002/adma.201801805
10.1038/s41586-019-1868-x
10.1002/adma.201605242
10.1038/nmat4271
10.1002/adfm.201402020
10.1021/jacs.6b11683
10.1038/s41377-020-00400-w
10.1016/j.nanoen.2016.10.009
10.1021/acs.nanolett.0c00171
10.1038/s41467-020-20530-4
10.1002/adom.201700672
10.1016/j.trc.2020.102856
10.1002/anie.202005092
10.1038/s41565-018-0278-9
10.1002/adfm.201504477
10.1364/OL.441505
10.1021/acsami.0c10062
10.1002/adma.201606859
10.1016/j.matt.2021.11.011
10.1021/acsami.2c06856
10.1002/adfm.201806692
10.1038/s41566-018-0220-6
10.1038/nnano.2015.90
10.1002/advs.202100569
10.1002/adfm.201908894
10.1002/adma.201605993
10.1073/pnas.1600789113
10.1002/advs.202104598
10.1002/inf2.12053
10.1002/adma.201804450
10.1002/adma.201603573
10.1038/ncomms9724
10.1002/adma.201905298
10.1021/jacs.2c05082
10.1038/nphoton.2016.185
10.1021/acs.jpclett.9b03718
10.1002/smll.202103855
10.1038/nnano.2016.44
10.1002/adma.202108408
10.1021/jacs.8b12948
10.1002/adfm.201808668
10.1002/anie.201703970
10.3389/fchem.2020.00632
10.1021/acsami.1c20851
10.1002/advs.202004853
10.1126/science.aal4211
10.1021/acs.jpclett.1c04225
10.1038/s41467-020-18485-7
10.1002/anie.202013947
10.1021/acs.nanolett.8b03209
10.1038/s41467-022-33934-1
10.1002/admt.202000513
10.1021/acsnano.0c03418
10.1038/nphoton.2015.156
10.1039/c7mh00197e
10.1021/acs.nanolett.7b00166
10.1002/adma.202003309
10.1002/anie.202205939
10.1002/adfm.202206999
10.1038/s41586-020-2526-z
10.1038/s41467-022-29253-0
10.1002/adma.201603995
10.1002/anie.201915912
10.1038/s41467-019-08768-z
10.1002/adfm.202200385
10.1021/acs.chemmater.6b01329
10.1002/anie.201908743
10.1002/adma.202207771
10.1002/adma.202001998
10.1002/adma.201503534
10.1038/s41578-020-0181-5
10.1126/science.abe0722
10.1002/advs.201901134
10.1002/adma.202200221
10.1038/s41586-018-0575-3
10.1002/adfm.202105855
10.1002/adma.201908108
10.1021/jacs.1c02675
10.1021/acsphotonics.8b00770
10.1002/smll.202102884
10.1038/nnano.2014.261
10.1021/acs.nanolett.9b03862
10.1002/adom.202000149
10.1038/s41563-018-0018-4
10.1039/c7ra06597c
10.1021/jacs.2c07892
10.1016/j.matt.2020.12.018
10.1039/c5tc03342j
10.1002/adom.201800679
10.1038/nphoton.2015.175
10.1002/adma.201706986
10.1038/s41467-022-31186-7
10.1002/adom.202102227
10.1039/c6cs00896h
10.1038/s41565-020-00802-2
10.1002/lpor.201600065
10.1002/adma.201505405
10.1038/ncomms2642
10.1021/jacs.9b06815
10.1002/adma.202207317
10.1002/adma.202000004
10.1038/nnano.2015.112
10.1021/acs.nanolett.6b04450
10.1038/nphoton.2016.41
10.1002/adma.201601196
10.1021/acsnano.9b04437
10.1016/j.giant.2021.100086
10.1002/adma.201604268
10.1038/s41467-019-09942-z
10.1002/adom.201801246
10.1002/adma.201904155
10.1063/1.3466766
10.1002/smll.201902135
10.1073/pnas.1703860114
10.1002/pssr.202100183
10.1126/science.aax8814
10.1002/adma.201704611
10.1021/acsmaterialslett.1c00726
10.1002/adpr.202100335
10.1063/1.4829065
10.1063/1.5141102
10.1038/s41467-018-07440-2
10.1126/sciadv.abd3274
10.1039/c6tc02828d
10.1002/adfm.201800283
10.1038/nature18306
10.1002/adma.201503774
10.1126/sciadv.aav8141
10.1021/acs.nanolett.6b03119
10.1002/smm2.1120
10.1364/prj.418450
10.1002/adma.202006691
10.1039/c8tc06089d
10.1021/acsami.1c24962
10.1038/s41566-019-0466-7
10.1021/acsami.2c07208
10.1021/acscentsci.1c00649
10.1002/adma.202003852
10.1126/science.aba459
10.1002/adom.201600704
10.1002/adom.202102436
10.1515/rams-2020-0015
10.1038/ncomms9379
10.1021/acsnano.9b00302
10.1021/acsnano.5b04995
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.1007/s40820-023-01161-y
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2150-5551
EndPage 30
ExternalDocumentID oai_doaj_org_article_132f1215e01f4e6da3e78b73c187d423
PMC10387041
37515723
10_1007_s40820_023_01161_y
Genre Journal Article
Review
GrantInformation_xml – fundername: Shanghai Jiao Tong University
– fundername: ;
GroupedDBID -02
-0B
-SB
-S~
0R~
4.4
5VR
5VS
8FE
8FG
92H
92I
92M
92R
93N
9D9
9DB
AAFWJ
AAJSJ
AAKKN
AAXDM
ABDBF
ABEEZ
ABJCF
ACACY
ACGFS
ACIWK
ACUHS
ACULB
ADBBV
ADINQ
ADMLS
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFUIB
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ASPBG
AVWKF
BAPOH
BCNDV
BENPR
BGLVJ
C1A
C24
C6C
CAJEB
CCEZO
CCPQU
CDRFL
D1I
EBLON
EBS
EJD
ESX
FA0
GROUPED_DOAJ
GX1
HCIFZ
IAO
IHR
IPNFZ
ITC
JUIAU
KB.
KQ8
KWQ
L6V
M7S
MM.
M~E
OK1
P62
PDBOC
PGMZT
PIMPY
PROAC
PTHSS
Q--
R-B
RIG
RNS
RPM
RSV
RT2
SOJ
T8R
TCJ
TGT
TR2
TUS
U1F
U1G
U5B
U5L
~LU
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c612t-2abca5e2af4e4156458997ca17e4746263a190d5e3ab1cbbdab3d3fda9bc0d943
IEDL.DBID BENPR
ISSN 2311-6706
2150-5551
IngestDate Wed Aug 27 01:32:43 EDT 2025
Thu Aug 21 18:41:32 EDT 2025
Fri Jul 11 00:08:24 EDT 2025
Wed Aug 13 04:33:19 EDT 2025
Wed Feb 19 02:22:17 EST 2025
Tue Jul 01 00:55:50 EDT 2025
Thu Apr 24 22:55:04 EDT 2025
Fri Feb 21 02:41:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Perovskite materials
Multifunctional photodetectors
Crystal structure design
Working mechanism
Micro/nano-structure manipulation
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c612t-2abca5e2af4e4156458997ca17e4746263a190d5e3ab1cbbdab3d3fda9bc0d943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.proquest.com/docview/2889585335?pq-origsite=%requestingapplication%
PMID 37515723
PQID 2889585335
PQPubID 2044332
PageCount 30
ParticipantIDs doaj_primary_oai_doaj_org_article_132f1215e01f4e6da3e78b73c187d423
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10387041
proquest_miscellaneous_2844090317
proquest_journals_2889585335
pubmed_primary_37515723
crossref_citationtrail_10_1007_s40820_023_01161_y
crossref_primary_10_1007_s40820_023_01161_y
springer_journals_10_1007_s40820_023_01161_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Germany
– name: Heidelberg
PublicationTitle Nano-micro letters
PublicationTitleAbbrev Nano-Micro Lett
PublicationTitleAlternate Nanomicro Lett
PublicationYear 2023
Publisher Springer Nature Singapore
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
– name: SpringerOpen
References Dou, Lai, Kley, Yang, Bischak (CR90) 2017; 114
Wang, Zou, Xu, Wang, Wang (CR7) 2021; 8
Gao, Zeng, Guo, Ge, Du (CR86) 2016; 16
Akkerman, Raino, Kovalenko, Manna (CR70) 2018; 17
Gholipour, Adamo, Cortecchia, Krishnamoorthy, Birowosuto (CR127) 2017; 29
Kim, Kim, Namgung, Cho, Son (CR51) 2022; 9
Li, Chen, Liu, Su, Qi (CR57) 2022; 47
He, Gao, Xie, Li, Zhang (CR97) 2016; 11
Jana, Song, Liu, Khanal, Janke (CR115) 2020; 11
Wang, Gao, Hao, Qin (CR106) 2020; 116
Li, Coppens, Besteiro, Wang, Govorov (CR126) 2015; 6
Casalino, Coppola, De La Rue, Logan (CR2) 2016; 10
Zhao, Dong, Feng, Zhao, Guo (CR109) 2021; 10
Li, Wang, Ma, Shen, Li (CR142) 2019; 10
Xue, Zhu, Xu, Gu, Wang (CR11) 2018; 18
Gao, Zhao, Shang, Zhong, Liu (CR96) 2018; 30
Wang, Xue, Cui, Huang, Xu (CR110) 2020; 59
Zhang, Liu, Li, Ji, Yao (CR111) 2021; 7
Zhou, Bekenstein, Eisler, Zhang, Schwartzberg (CR75) 2019; 5
Kim, Zhai, Gaulding, Habisreutinger, Moot (CR76) 2020; 14
Chen, Gao, Gao, Ge, Du (CR21) 2019; 10
Xu, Han, Zou, Li, Gu (CR65) 2021; 34
Zhao, Zhao, Guo, Zhao, Feng (CR118) 2022; 3
Fang, Dong, Shao, Yuan, Huang (CR138) 2015; 9
Duim, Loi (CR122) 2021; 4
Fu, Yuan, Zhao, Dong, Guo (CR48) 2023; 33
Feng, Yan, Liu, Gao, Wu (CR55) 2017; 29
Zhang, Ma, Wang, Zhang, Zuo (CR16) 2021; 33
Deng, Huang, Xu, Zhang, Jin (CR43) 2017; 17
Sun, Tian, Wang, Deng, Xiong (CR144) 2020; 32
Pan, Su, Zhang, Chen, Huang (CR146) 2020; 32
Miao, Zhang (CR18) 2019; 7
Saidaminov, Haque, Almutlaq, Sarmah, Miao (CR157) 2017; 5
Pi, Zhao, Zhao, Feng, Zhang (CR101) 2020; 8
Wang, Yan, Zhang, Sun, Yang, Shen (CR74) 2016; 28
Lei, Chen, Zhang, Li, Yan (CR100) 2020; 583
Dang, Liu, Cao, Tao (CR108) 2021; 4
Wang, Fang, Ma, Wang, Jin (CR120) 2019; 13
Shen, Fang, Wang, Bai, Deng (CR148) 2016; 28
Ahmadi, Wu, Hu (CR9) 2017; 29
Li, Deng, Bao, Fang, Wei (CR137) 2017; 5
Liu, Zhang, Yang, Ye, Feng (CR44) 2018; 9
Zhu, Fu, Meng, Wu, Gong (CR33) 2015; 14
Ji, Dey, Peng, Liu, Li (CR56) 2020; 59
Tan, Wu, Hong, Yin, Zhang (CR41) 2016; 138
Lin, Armin, Burn, Meredith (CR135) 2015; 9
Lu, Tian, Cao, Ma, Gu (CR149) 2016; 26
Huang, Taniguchi, Miyasaka (CR22) 2019; 141
Zhao, Qiu, Feng, Zhao, Chen (CR47) 2021; 143
ElHamdani, Benamar, Younis (CR12) 2020; 121
Chen, Lei, Li, Yu, Cai (CR93) 2020; 577
Su, Zhao, Li, Yuan, Wang (CR150) 2015; 9
Pan, Fu, Spitha, Zhao, Roy (CR94) 2021; 16
Ahn, Lee, Tan, Yang, Kim (CR123) 2017; 4
Sheng, Chen, Wang, Wang, Hui (CR59) 2018; 28
Dong, Zou, Song, Zhu, Li (CR147) 2016; 30
Hu, Zhang, Liang, Bao, Li (CR133) 2014; 24
Han, Li, Liu, Guo, Hong (CR151) 2021; 12
Han, Ma, Hua, Tang, Wang (CR69) 2022; 144
Lai, Shin, Jibril, Mirkin (CR77) 2022; 144
Cen, Liu, Zhao, Wang, Fu (CR155) 2019; 15
Li, Liu, Wu, Peng, Zhao (CR124) 2021; 60
Long, Sabatini, Saidaminov, Lakhwani, Rasmita (CR6) 2020; 5
Saouma, Stoumpos, Wong, Kanatzidis, Jang (CR37) 2017; 8
Shen, Xu, Li, Guo, Sathasivam (CR156) 2020; 32
Hao, Zou, Huang (CR17) 2019; 2
Meng, Cadusch, Crozier (CR24) 2020; 20
Li, Han, Teng, Li, Liu (CR84) 2020; 8
Zhao, Zhao, Guo, Zhan, Feng (CR116) 2021; 31
Zhang, Ye, Liang, Niu, Wu (CR125) 2022; 14
Sun, Geng, Yong, Lu, Ai (CR72) 2021; 8
Oku (CR73) 2020; 59
Fang, Li, Ding, Li, Tian (CR154) 2016; 4
Leung, Ho, Kung, Hsiao, Alshareef (CR66) 2018; 30
Ma, Fang, Chen, Jin, Wang (CR46) 2019; 13
Kim, Kyhm, Han, Kim, Ahn (CR105) 2019; 29
Guo, Sun, Wang, Wang, Min (CR27) 2022; 34
Zhang, Weng, Li, Wu, Yao (CR112) 2021; 17
Stranks, Snaith (CR30) 2015; 10
Yi, Zhou, Yu, Fan, Behdad (CR19) 2018; 13
Zhang, Yao, Liang, Niu, Wu (CR64) 2022; 61
Liu, Yang, Wang, Adil, Zhao (CR25) 2022; 4
Cicek, McClintock, Cho, Rahnema, Razeghi (CR140) 2013; 103
Ma, Fang, Liang, Wang, Li (CR62) 2021; 17
Yang, Chen, Ding, Wang, Rao (CR113) 2019; 31
Dang, Liu, Sun, Song, Hu (CR114) 2020; 11
Xu, Huang, Wu, Wei, Meng (CR15) 2021; 15
Hartmann, Varytis, Gehring, Walter, Beutel (CR23) 2020; 20
Cao, Tian, Wang, Li (CR68) 2018; 5
Steele, Pan, Martin, Keshavarz, Debroye (CR79) 2018; 30
Fu, Wang, Liu, Dong, Liu (CR92) 2019; 15
Yang, Albrow-Owen, Cai, Hasan (CR26) 2021; 371
Lin, Xing, Quan, de Arquer, Gong (CR40) 2018; 562
Li, Liu, Li, Xu, Wu (CR81) 2019; 141
Joo, Kyoung, Esfandyarpour, Lee, Koo (CR130) 2020; 370
Fang, Li, Ding, Sun, Li (CR54) 2017; 9
Blancon, Tsai, Nie, Stoumpos, Pedesseau (CR32) 2017; 355
Tsai, Nie, Blancon, Stoumpos, Asadpour (CR31) 2016; 536
Wang, Cheng, Ge, Zhang, Miao (CR35) 2016; 10
Jansen-van Vuuren, Armin, Pandey, Burn, Meredith (CR4) 2016; 28
Huang, Xiao, Dong (CR52) 2020; 5
Shaikh, Shi, Retamal, Sheikh, Haque (CR152) 2016; 4
Huang, Zhang, Xiao, Wang, Fan (CR129) 2020; 367
Sun, Tian, Cao, Xiong, Li (CR153) 2018; 30
Wang, Fullon, Acerce, Petoukhoff, Yang (CR91) 2017; 29
Li, Hong, Zhang, Deng, Fang (CR14) 2022; 13
Du, Meng, Wang, Yan, Mitzi (CR36) 2017; 56
Abdi-Jalebi, Andaji-Garmaroudi, Cacovich, Stavrakas, Philippe (CR39) 2018; 555
Lu, Li, Zhang, Han, He (CR80) 2022; 3
Li, Xia, Liu, Zhu, Feng (CR88) 2023; 35
Zhan, Cheng, Song, Li (CR53) 2022; 32
Li, Xia, Wang, Sun, An (CR63) 2022; 32
Zhao, Qiu, Gao, Feng, Chen (CR71) 2020; 32
Zhao, Li, Du, Zhang, Wei (CR87) 2020; 12
Zhu, Jiang, Ma, Feng, Zhan (CR107) 2022; 13
Zheng, Ju, Wang, Wang, Li (CR104) 2018; 6
Higashi, Kim, Jeon, Ichikawa (CR139) 2010; 108
Adinolfi, Ouellette, Saidaminov, Walters, Abdelhady (CR45) 2016; 28
Yang, Albrow-Owen, Cui, Alexander-Webber, Gu (CR20) 2019; 365
Zhao, Li, Feng, Zhao, Guo (CR58) 2022; 9
Chen, Fu, Samad, Dang, Zhao (CR95) 2017; 17
Shi, Adinolfi, Comin, Yuan, Alarousu (CR29) 2015; 347
Zhou, Luo, Zhao, Ge, Wang (CR98) 2018; 6
Long, Adamo, Tian, Klein, Krishnamoorthy (CR78) 2022; 13
Yuan, Zhao, Feng, Gao, Zhao (CR102) 2022; 14
Long, Jiang, Sabatini, Yang, Wei (CR119) 2018; 12
Chen, Liu, Zhang, Hu, Fang (CR3) 2016; 28
Sobhani, Knight, Wang, Zheng, King (CR141) 2013; 4
Han, Fu, Zou, Gu, Liu (CR85) 2021; 33
Li, Xu, Li, Guo, Wang (CR103) 2020; 32
Wang, Chen, Chu, Liu, Zhang (CR145) 2022; 14
Ishii, Miyasaka (CR121) 2020; 6
Zeng, Chen, Zhang, Wu, Yuan (CR60) 2019; 6
Alshamrani, Grieco, Hong, Fainman (CR134) 2021; 29
Zhou, Abdelwahab, Leng, Loh, Ji (CR89) 2019; 31
Chen, Qiu, Gao, Zhao, Feng (CR13) 2020; 30
Zhan, Wang, Cheng, Li, Li (CR61) 2019; 58
Cui, Bai, Sun (CR128) 2019; 29
Perumal Veeramalai, Feng, Zhang, Pammi, Pecunia (CR28) 2021; 9
Wei, Fang, Mulligan, Chuirazzi, Fang (CR42) 2016; 10
Yuan, Liu, Afshinmanesh, Li, Xu (CR82) 2015; 10
Zhang, Wu, Riaud, Wang, Xie (CR143) 2020; 9
Yao, Yang, Meng, Sun, Dong (CR38) 2017; 29
Wang, Kim (CR5) 2017; 46
Yu, Cao, Zhao, Guo, Dong (CR117) 2022; 14
Zhuang, Wang, Ma, Wu, Chen (CR50) 2019; 13
Wang, Li, Liu, Shi, Fang (CR8) 2021; 33
Cubero, Aleixos, Moltó, Gómez-Sanchis, Blasco (CR10) 2010; 4
Feng, He, Qu, Song, Pan (CR67) 2022; 13
Kelley, Mirkin, Walt, Ismagilov, Toner (CR1) 2014; 9
Shen, Fang, Wei, Yuan, Huang (CR136) 2016; 28
Saidaminov, Adinolfi, Comin, Abdelhady, Peng (CR99) 2015; 6
Klein, Wang, Tian, Ha, Paniagua-Dominguez (CR131) 2022; 35
Eaton, Lai, Gibson, Wong, Dou (CR34) 2016; 113
Zhang, Wang, Zhang, Jiang, Gao (CR49) 2017; 7
Dai, Wang, Qiang, Wang, Ye (CR132) 2022; 13
Wang, Jiang, Li, Xiao (CR83) 2022; 10
H Fang (1161_CR54) 2017; 9
A Wang (1161_CR74) 2016; 28
Y Zhao (1161_CR109) 2021; 10
Y Dang (1161_CR114) 2020; 11
Y Zhang (1161_CR16) 2021; 33
Y Higashi (1161_CR139) 2010; 108
LH Zeng (1161_CR60) 2019; 6
N Alshamrani (1161_CR134) 2021; 29
A Sobhani (1161_CR141) 2013; 4
W Deng (1161_CR43) 2017; 17
X Huang (1161_CR52) 2020; 5
PJ Huang (1161_CR22) 2019; 141
M Casalino (1161_CR2) 2016; 10
RD Jansen-van Vuuren (1161_CR4) 2016; 28
J Meng (1161_CR24) 2020; 20
Y Dong (1161_CR147) 2016; 30
Y Zhan (1161_CR53) 2022; 32
L Wang (1161_CR110) 2020; 59
J Zhao (1161_CR116) 2021; 31
SX Li (1161_CR88) 2023; 35
L Guo (1161_CR27) 2022; 34
ME Sun (1161_CR72) 2021; 8
D Hao (1161_CR17) 2019; 2
X Lu (1161_CR80) 2022; 3
Z Han (1161_CR85) 2021; 33
Z Tan (1161_CR41) 2016; 138
X Zhang (1161_CR125) 2022; 14
JA Steele (1161_CR79) 2018; 30
M Klein (1161_CR131) 2022; 35
Y Gao (1161_CR96) 2018; 30
MK Jana (1161_CR115) 2020; 11
Y Lei (1161_CR100) 2020; 583
W Li (1161_CR126) 2015; 6
H Duim (1161_CR122) 2021; 4
B Gholipour (1161_CR127) 2017; 29
SX Li (1161_CR63) 2022; 32
Z Wang (1161_CR106) 2020; 116
R Zhuang (1161_CR50) 2019; 13
G Long (1161_CR78) 2022; 13
M Yuan (1161_CR102) 2022; 14
L Liu (1161_CR25) 2022; 4
G Chen (1161_CR13) 2020; 30
V Adinolfi (1161_CR45) 2016; 28
X Zhang (1161_CR64) 2022; 61
Z Zhao (1161_CR87) 2020; 12
H Tsai (1161_CR31) 2016; 536
SO Kelley (1161_CR1) 2014; 9
F Cao (1161_CR68) 2018; 5
C Chen (1161_CR21) 2019; 10
J Xue (1161_CR11) 2018; 18
W Xu (1161_CR15) 2021; 15
X He (1161_CR97) 2016; 11
W Hartmann (1161_CR23) 2020; 20
Y Zhao (1161_CR71) 2020; 32
S ElHamdani (1161_CR12) 2020; 121
CY Li (1161_CR57) 2022; 47
T Oku (1161_CR73) 2020; 59
M Ahmadi (1161_CR9) 2017; 29
Y Zhou (1161_CR98) 2018; 6
Y Zhao (1161_CR58) 2022; 9
L Shen (1161_CR136) 2016; 28
G Cen (1161_CR155) 2019; 15
J Wang (1161_CR83) 2022; 10
W-J Joo (1161_CR130) 2020; 370
KZ Du (1161_CR36) 2017; 56
X Zhang (1161_CR112) 2021; 17
M Dai (1161_CR132) 2022; 13
J Miao (1161_CR18) 2019; 7
X Zhang (1161_CR111) 2021; 7
H Wang (1161_CR5) 2017; 46
Y Zhao (1161_CR47) 2021; 143
SX Li (1161_CR103) 2020; 32
FO Saouma (1161_CR37) 2017; 8
J Ma (1161_CR46) 2019; 13
PA Shaikh (1161_CR152) 2016; 4
Y Fu (1161_CR48) 2023; 33
J Ahn (1161_CR123) 2017; 4
K Shen (1161_CR156) 2020; 32
H Sun (1161_CR144) 2020; 32
SF Leung (1161_CR66) 2018; 30
N Zhou (1161_CR75) 2019; 5
H Zheng (1161_CR104) 2018; 6
X Xu (1161_CR65) 2021; 34
Y Zhao (1161_CR118) 2022; 3
L Gao (1161_CR86) 2016; 16
S Han (1161_CR69) 2022; 144
J Feng (1161_CR55) 2017; 29
C-K Yang (1161_CR113) 2019; 31
K Lin (1161_CR40) 2018; 562
JC Blancon (1161_CR32) 2017; 355
F Zhou (1161_CR89) 2019; 31
H Lu (1161_CR149) 2016; 26
L Dou (1161_CR90) 2017; 114
E Cicek (1161_CR140) 2013; 103
M Abdi-Jalebi (1161_CR39) 2018; 555
D Shi (1161_CR29) 2015; 347
Y Fang (1161_CR138) 2015; 9
X Hu (1161_CR133) 2014; 24
M Lai (1161_CR77) 2022; 144
Y Zhan (1161_CR61) 2019; 58
M Li (1161_CR84) 2020; 8
SW Eaton (1161_CR34) 2016; 113
J Ma (1161_CR62) 2021; 17
L Li (1161_CR137) 2017; 5
MI Saidaminov (1161_CR99) 2015; 6
D Zhu (1161_CR107) 2022; 13
G Long (1161_CR119) 2018; 12
H Chen (1161_CR3) 2016; 28
SD Stranks (1161_CR30) 2015; 10
J Chen (1161_CR95) 2017; 17
MN Zhang (1161_CR143) 2020; 9
Z Yang (1161_CR20) 2019; 365
S Cubero (1161_CR10) 2010; 4
N Wang (1161_CR35) 2016; 10
X Feng (1161_CR67) 2022; 13
Y Liu (1161_CR44) 2018; 9
X Sheng (1161_CR59) 2018; 28
H Zhu (1161_CR33) 2015; 14
QA Akkerman (1161_CR70) 2018; 17
C Ji (1161_CR56) 2020; 59
Q Fu (1161_CR92) 2019; 15
NY Kim (1161_CR105) 2019; 29
J Zhang (1161_CR49) 2017; 7
Q Pan (1161_CR146) 2020; 32
H Yuan (1161_CR82) 2015; 10
J Li (1161_CR142) 2019; 10
H Wei (1161_CR42) 2016; 10
Y Pi (1161_CR101) 2020; 8
Z Yang (1161_CR26) 2021; 371
Y Wang (1161_CR91) 2017; 29
GK Long (1161_CR6) 2020; 5
J Wang (1161_CR120) 2019; 13
EP Yao (1161_CR38) 2017; 29
T Cui (1161_CR128) 2019; 29
Q Lin (1161_CR135) 2015; 9
C Perumal Veeramalai (1161_CR28) 2021; 9
F Wang (1161_CR7) 2021; 8
A Ishii (1161_CR121) 2020; 6
Y Dang (1161_CR108) 2021; 4
Z Li (1161_CR14) 2022; 13
S Yi (1161_CR19) 2018; 13
D Pan (1161_CR94) 2021; 16
YH Kim (1161_CR76) 2020; 14
C Huang (1161_CR129) 2020; 367
L Shen (1161_CR148) 2016; 28
L Su (1161_CR150) 2015; 9
H Fang (1161_CR154) 2016; 4
D Li (1161_CR124) 2021; 60
Z Yu (1161_CR117) 2022; 14
Y Chen (1161_CR93) 2020; 577
S Han (1161_CR151) 2021; 12
H Sun (1161_CR153) 2018; 30
H Kim (1161_CR51) 2022; 9
HP Wang (1161_CR8) 2021; 33
XL Wang (1161_CR145) 2022; 14
MI Saidaminov (1161_CR157) 2017; 5
L Li (1161_CR81) 2019; 141
References_xml – volume: 31
  start-page: 1808088
  issue: 16
  year: 2019
  ident: CR113
  article-title: The first 2D homochiral lead iodide perovskite ferroelectrics: [R- and S-1-(4-chlorophenylethylammonium] PbI
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201808088
– volume: 555
  start-page: 497
  issue: 7697
  year: 2018
  end-page: 501
  ident: CR39
  article-title: Maximizing and stabilizing luminescence from halide perovskites with potassium passivation
  publication-title: Nature
  doi: 10.1038/nature25989
– volume: 9
  start-page: 10921
  issue: 12
  year: 2017
  end-page: 10928
  ident: CR54
  article-title: An origami perovskite photodetector with spatial recognition ability
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b02213
– volume: 347
  start-page: 519
  issue: 6221
  year: 2015
  end-page: 522
  ident: CR29
  article-title: Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals
  publication-title: Science
  doi: 10.1126/science.aaa27
– volume: 15
  start-page: 1902890
  issue: 39
  year: 2019
  ident: CR92
  article-title: Ultrathin ruddlesden–popper perovskite heterojunction for sensitive photodetection
  publication-title: Small
  doi: 10.1002/smll.201902890
– volume: 32
  start-page: 1907280
  issue: 16
  year: 2020
  ident: CR146
  article-title: Omnidirectional photodetectors based on spatial resonance asymmetric facade via a 3D self-standing strategy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201907280
– volume: 370
  start-page: 459
  year: 2020
  end-page: 463
  ident: CR130
  article-title: Metasurface-driven oled displays beyond 10,000 pixels per inch
  publication-title: Science
  doi: 10.1126/science.abc853
– volume: 13
  start-page: 4560
  issue: 1
  year: 2022
  ident: CR132
  article-title: On-chip mid-infrared photothermoelectric detectors for full-stokes detection
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-32309-w
– volume: 8
  start-page: 742
  issue: 1
  year: 2017
  ident: CR37
  article-title: Selective enhancement of optical nonlinearity in two-dimensional organic-inorganic lead iodide perovskites
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00788-x
– volume: 4
  start-page: 487
  issue: 4
  year: 2010
  end-page: 504
  ident: CR10
  article-title: Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables
  publication-title: Food Bioprocess. Technol.
  doi: 10.1007/s11947-010-0411-8
– volume: 33
  start-page: 2214094
  year: 2023
  ident: CR48
  article-title: Gradient bandgap-tunable perovskite microwire arrays toward flexible color-cognitive devices
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202214094
– volume: 29
  start-page: 15279
  issue: 10
  year: 2021
  end-page: 15287
  ident: CR134
  article-title: Miniaturized integrated spectrometer using a silicon ring-grating design
  publication-title: Opt. Express
  doi: 10.1364/OE.424443
– volume: 30
  start-page: 1801805
  issue: 31
  year: 2018
  ident: CR96
  article-title: Ultrathin CsPbX nanowire arrays with strong emission anisotropy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801805
– volume: 577
  start-page: 209
  issue: 7789
  year: 2020
  end-page: 215
  ident: CR93
  article-title: Strain engineering and epitaxial stabilization of halide perovskites
  publication-title: Nature
  doi: 10.1038/s41586-019-1868-x
– volume: 29
  start-page: 1605242
  issue: 41
  year: 2017
  ident: CR9
  article-title: A review on organic-inorganic halide perovskite photodetectors: device engineering and fundamental physics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605242
– volume: 14
  start-page: 636
  issue: 6
  year: 2015
  end-page: 642
  ident: CR33
  article-title: Lead halide perovskite nanowire lasers with low lasing thresholds and high-quality factors
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4271
– volume: 24
  start-page: 7373
  issue: 46
  year: 2014
  end-page: 7380
  ident: CR133
  article-title: High-performance flexible broadband photodetector based on organolead halide perovskite
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201402020
– volume: 138
  start-page: 16612
  issue: 51
  year: 2016
  end-page: 16615
  ident: CR41
  article-title: Two-dimensional (C H NH ) PbBr perovskite crystals for high-performance photodetector
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b11683
– volume: 9
  start-page: 162
  year: 2020
  ident: CR143
  article-title: Spectrum projection with a bandgap-gradient perovskite cell for colour perception
  publication-title: Light Sci. Appl.
  doi: 10.1038/s41377-020-00400-w
– volume: 30
  start-page: 173
  year: 2016
  end-page: 179
  ident: CR147
  article-title: Self-powered fiber-shaped wearable omnidirectional photodetectors
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.10.009
– volume: 20
  start-page: 2625
  issue: 4
  year: 2020
  end-page: 2631
  ident: CR23
  article-title: Broadband spectrometer with single-photon sensitivity exploiting tailored disorder
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c00171
– volume: 12
  start-page: 284
  issue: 1
  year: 2021
  ident: CR151
  article-title: Tailoring of a visible-light-absorbing biaxial ferroelectric towards broadband self-driven photodetection
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20530-4
– volume: 5
  start-page: 1700672
  issue: 22
  year: 2017
  ident: CR137
  article-title: Self-filtered narrowband perovskite photodetectors with ultrafast and tuned spectral response
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201700672
– volume: 121
  start-page: 102856
  year: 2020
  ident: CR12
  article-title: Pedestrian support in intelligent transportation systems: challenges, solutions and open issues
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2020.102856
– volume: 59
  start-page: 18933
  issue: 43
  year: 2020
  end-page: 18937
  ident: CR56
  article-title: Ferroelectricity-driven self-powered ultraviolet photodetection with strong polarization sensitivity in a two-dimensional halide hybrid perovskite
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202005092
– volume: 13
  start-page: 1143
  issue: 12
  year: 2018
  end-page: 1147
  ident: CR19
  article-title: Subwavelength angle-sensing photodetectors inspired by directional hearing in small animals
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0278-9
– volume: 26
  start-page: 1296
  issue: 8
  year: 2016
  end-page: 1302
  ident: CR149
  article-title: A self-powered and stable all-perovskite photodetector-solar cell nanosystem
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201504477
– volume: 47
  start-page: 565
  issue: 3
  year: 2022
  end-page: 568
  ident: CR57
  article-title: Multiple-polarization-sensitive photodetector based on a perovskite metasurface
  publication-title: Opt. Lett.
  doi: 10.1364/OL.441505
– volume: 12
  start-page: 44248
  issue: 39
  year: 2020
  end-page: 44255
  ident: CR87
  article-title: Preparation and testing of anisotropic MAPbI perovskite photoelectric sensors
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c10062
– volume: 29
  start-page: 1606859
  issue: 23
  year: 2017
  ident: CR38
  article-title: High-brightness blue and white LEDs based on inorganic perovskite nanocrystals and their composites
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606859
– volume: 4
  start-page: 3835
  issue: 12
  year: 2021
  end-page: 3851
  ident: CR122
  article-title: Chiral hybrid organic-inorganic metal halides: a route toward direct detection and emission of polarized light
  publication-title: Matter
  doi: 10.1016/j.matt.2021.11.011
– volume: 14
  start-page: 39451
  issue: 34
  year: 2022
  end-page: 39458
  ident: CR117
  article-title: Chiral lead-free double perovskite single-crystalline microwire arrays for anisotropic second-harmonic generation
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c06856
– volume: 29
  start-page: 1806692
  issue: 10
  year: 2019
  ident: CR128
  article-title: Tunable metasurfaces based on active materials
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201806692
– volume: 12
  start-page: 528
  issue: 9
  year: 2018
  ident: CR119
  article-title: Spin control in reduced-dimensional chiral perovskites
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-018-0220-6
– volume: 10
  start-page: 391
  issue: 5
  year: 2015
  end-page: 402
  ident: CR30
  article-title: Metal-halide perovskites for photovoltaic and light-emitting devices
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.90
– volume: 8
  start-page: 2100569
  issue: 14
  year: 2021
  ident: CR7
  article-title: Recent progress on electrical and optical manipulations of perovskite photodetectors
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202100569
– volume: 30
  start-page: 1908894
  issue: 14
  year: 2020
  ident: CR13
  article-title: Air-stable highly crystalline formamidinium perovskite 1D structures for ultrasensitive photodetectors
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201908894
– volume: 29
  start-page: 1605993
  issue: 16
  year: 2017
  ident: CR55
  article-title: Crystallographically aligned perovskite structures for high-performance polarization-sensitive photodetectors
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605993
– volume: 113
  start-page: 1993
  issue: 8
  year: 2016
  end-page: 1998
  ident: CR34
  article-title: Lasing in robust cesium lead halide perovskite nanowires
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1600789113
– volume: 9
  start-page: 2104598
  issue: 5
  year: 2022
  ident: CR51
  article-title: Ultrasensitive near-infrared circularly polarized light detection using 3D perovskite embedded with chiral plasmonic nanoparticles
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202104598
– volume: 2
  start-page: 139
  issue: 1
  year: 2019
  end-page: 169
  ident: CR17
  article-title: Recent developments in flexible photodetectors based on metal halide perovskite
  publication-title: InfoMat
  doi: 10.1002/inf2.12053
– volume: 30
  start-page: 1804450
  issue: 46
  year: 2018
  ident: CR79
  article-title: Photophysical pathways in highly sensitive Cs AgBiBr double-perovskite single-crystal X-ray detectors
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804450
– volume: 28
  start-page: 10794
  issue: 48
  year: 2016
  end-page: 10800
  ident: CR148
  article-title: A self-powered, sub-nanosecond-response solution-processed hybrid perovskite photodetector for time-resolved photoluminescence-lifetime detection
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603573
– volume: 6
  start-page: 8724
  year: 2015
  ident: CR99
  article-title: Planar-integrated single-crystalline perovskite photodetectors
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9724
– volume: 32
  start-page: 1905298
  issue: 9
  year: 2020
  ident: CR71
  article-title: Layered-perovskite nanowires with long-range orientational order for ultrasensitive photodetectors
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201905298
– volume: 144
  start-page: 13823
  issue: 30
  year: 2022
  end-page: 13830
  ident: CR77
  article-title: Combinatorial synthesis and screening of mixed halide perovskite megalibraries
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c05082
– volume: 10
  start-page: 699
  issue: 11
  year: 2016
  end-page: 704
  ident: CR35
  article-title: Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2016.185
– volume: 11
  start-page: 1689
  issue: 5
  year: 2020
  end-page: 1696
  ident: CR114
  article-title: Bulk chiral halide perovskite single crystals for active circular dichroism and circularly polarized luminescence
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b03718
– volume: 17
  start-page: 2103855
  issue: 47
  year: 2021
  ident: CR62
  article-title: Full-stokes polarimeter based on chiral perovskites with chirality and large optical anisotropy
  publication-title: Small
  doi: 10.1002/smll.202103855
– volume: 11
  start-page: 633
  issue: 7
  year: 2016
  end-page: 638
  ident: CR97
  article-title: Wafer-scale monodomain films of spontaneously aligned single-walled carbon nanotubes
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.44
– volume: 34
  start-page: 2108408
  issue: 9
  year: 2021
  ident: CR65
  article-title: Miniaturized multispectral detector derived from gradient response units on single MAPbX microwire
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202108408
– volume: 141
  start-page: 2623
  issue: 6
  year: 2019
  end-page: 2629
  ident: CR81
  article-title: Two-dimensional hybrid perovskite-type ferroelectric for highly polarization-sensitive shortwave photodetection
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b12948
– volume: 29
  start-page: 1808668
  issue: 11
  year: 2019
  ident: CR105
  article-title: Chiroptical-conjugated polymer/chiral small molecule hybrid thin films for circularly polarized light-detecting heterojunction devices
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201808668
– volume: 56
  start-page: 8158
  issue: 28
  year: 2017
  end-page: 8162
  ident: CR36
  article-title: Bandgap engineering of lead-free double perovskite Cs AgBiBr through trivalent metal alloying
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201703970
– volume: 8
  start-page: 632
  year: 2020
  ident: CR101
  article-title: Capillary-bridge controlled patterning of stable double-perovskite microwire arrays for non-toxic photodetectors
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2020.00632
– volume: 14
  start-page: 1601
  issue: 1
  year: 2022
  end-page: 1608
  ident: CR102
  article-title: Ultrasensitive photodetectors based on strongly interacted layered-perovskite nanowires
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c20851
– volume: 8
  start-page: 2004853
  issue: 9
  year: 2021
  ident: CR72
  article-title: Pressure-triggered blue emission of zero-dimensional organic bismuth bromide perovskite
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202004853
– volume: 355
  start-page: 1288
  issue: 6331
  year: 2017
  end-page: 1291
  ident: CR32
  article-title: Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites
  publication-title: Science
  doi: 10.1126/science.aal4211
– volume: 13
  start-page: 1215
  issue: 5
  year: 2022
  end-page: 1225
  ident: CR14
  article-title: Perovskite-type 2D materials for high-performance photodetectors
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.1c04225
– volume: 11
  start-page: 4699
  issue: 1
  year: 2020
  ident: CR115
  article-title: Organic-to-inorganic structural chirality transfer in a 2D hybrid perovskite and impact on rashba-dresselhaus spin-orbit coupling
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18485-7
– volume: 60
  start-page: 8415
  issue: 15
  year: 2021
  end-page: 8418
  ident: CR124
  article-title: Chiral lead-free hybrid perovskites for self-powered circularly polarized light detection
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202013947
– volume: 18
  start-page: 7628
  issue: 12
  year: 2018
  end-page: 7634
  ident: CR11
  article-title: Narrowband perovskite photodetector-based image array for potential application in artificial vision
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b03209
– volume: 13
  start-page: 6106
  issue: 1
  year: 2022
  ident: CR67
  article-title: Spray-coated perovskite hemispherical photodetector featuring narrow-band and wide-angle imaging
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33934-1
– volume: 5
  start-page: 2000513
  issue: 10
  year: 2020
  ident: CR52
  article-title: Metal halide perovskites functionalized by patterning technologies
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.202000513
– volume: 14
  start-page: 8816
  issue: 7
  year: 2020
  end-page: 8825
  ident: CR76
  article-title: Strategies to achieve high circularly polarized luminescence from colloidal organic-inorganic hybrid perovskite nanocrystals
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c03418
– volume: 9
  start-page: 679
  issue: 10
  year: 2015
  end-page: 686
  ident: CR138
  article-title: Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2015.156
– volume: 4
  start-page: 851
  issue: 5
  year: 2017
  end-page: 856
  ident: CR123
  article-title: A new class of chiral semiconductors: chiral-organic-molecule-incorporating organic-inorganic hybrid perovskites
  publication-title: Mater. Horiz.
  doi: 10.1039/c7mh00197e
– volume: 17
  start-page: 2482
  issue: 4
  year: 2017
  end-page: 2489
  ident: CR43
  article-title: Ultrahigh-responsivity photodetectors from perovskite nanowire arrays for sequentially tunable spectral measurement
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b00166
– volume: 33
  start-page: 2003309
  issue: 7
  year: 2021
  ident: CR8
  article-title: Low-dimensional metal halide perovskite photodetectors
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202003309
– volume: 61
  start-page: 202205939
  issue: 32
  year: 2022
  ident: CR64
  article-title: Self-assembly of 2D hybrid double perovskites on 3D Cs AgBiBr crystals towards ultrasensitive detection of weak polarized light
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202205939
– volume: 32
  start-page: 2206999
  issue: 45
  year: 2022
  ident: CR63
  article-title: Self-powered and flexible photodetector with high polarization sensitivity based on MAPbBr –MAPbI microwire lateral heterojunction
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202206999
– volume: 583
  start-page: 790
  issue: 7818
  year: 2020
  end-page: 795
  ident: CR100
  article-title: A fabrication process for flexible single-crystal perovskite devices
  publication-title: Nature
  doi: 10.1038/s41586-020-2526-z
– volume: 13
  start-page: 1551
  issue: 1
  year: 2022
  ident: CR78
  article-title: Perovskite metasurfaces with large superstructural chirality
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29253-0
– volume: 29
  start-page: 1603995
  issue: 4
  year: 2017
  ident: CR91
  article-title: Solution-processed MoS /organolead trihalide perovskite photodetectors
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603995
– volume: 59
  start-page: 6442
  issue: 16
  year: 2020
  end-page: 6450
  ident: CR110
  article-title: A chiral reduced-dimension perovskite for an efficient flexible circularly polarized light photodetector
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201915912
– volume: 10
  start-page: 806
  issue: 1
  year: 2019
  ident: CR142
  article-title: Self-trapped state enabled filterless narrowband photodetections in 2D layered perovskite single crystals
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08768-z
– volume: 32
  start-page: 2200385
  issue: 24
  year: 2022
  ident: CR53
  article-title: Micro-nano structure functionalized perovskite optoelectronics: from structure functionalities to device applications
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202200385
– volume: 28
  start-page: 8132
  issue: 22
  year: 2016
  end-page: 8140
  ident: CR74
  article-title: Controlled synthesis of lead-free and stable perovskite derivative Cs SnI nanocrystals via a facile hot-injection process
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b01329
– volume: 58
  start-page: 16456
  issue: 46
  year: 2019
  end-page: 16462
  ident: CR61
  article-title: A butterfly-inspired hierarchical light-trapping structure towards a high-performance polarization-sensitive perovskite photodetector
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201908743
– volume: 35
  start-page: 2207771
  issue: 3
  year: 2023
  ident: CR88
  article-title: In situ encapsulated moire perovskite for stable photodetectors with ultrahigh polarization sensitivity
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202207771
– volume: 32
  start-page: 2001998
  issue: 28
  year: 2020
  ident: CR103
  article-title: Perovskite single-crystal microwire-array photodetectors with performance stability beyond 1 year
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202001998
– volume: 28
  start-page: 403
  issue: 3
  year: 2016
  end-page: 433
  ident: CR3
  article-title: Nanostructured photodetectors: from ultraviolet to terahertz
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503534
– volume: 5
  start-page: 423
  issue: 6
  year: 2020
  end-page: 439
  ident: CR6
  article-title: Chiral-perovskite optoelectronics
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-020-0181-5
– volume: 371
  start-page: 480
  issue: 6528
  year: 2021
  ident: CR26
  article-title: Miniaturization of optical spectrometers
  publication-title: Science
  doi: 10.1126/science.abe0722
– volume: 6
  start-page: 1901134
  issue: 19
  year: 2019
  ident: CR60
  article-title: Multilayered PdSe /perovskite schottky junction for fast, self-powered, polarization-sensitive, broadband photodetectors, and image sensor application
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201901134
– volume: 34
  start-page: 2200221
  issue: 33
  year: 2022
  ident: CR27
  article-title: A single-dot perovskite spectrometer
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202200221
– volume: 562
  start-page: 245
  issue: 7726
  year: 2018
  end-page: 248
  ident: CR40
  article-title: Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent
  publication-title: Nature
  doi: 10.1038/s41586-018-0575-3
– volume: 31
  start-page: 2105855
  issue: 48
  year: 2021
  ident: CR116
  article-title: Layered metal-halide perovskite single-crystalline microwire arrays for anisotropic nonlinear optics
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202105855
– volume: 32
  start-page: 1908108
  issue: 14
  year: 2020
  ident: CR144
  article-title: In situ formed gradient bandgap-tunable perovskite for ultrahigh-speed color/spectrum-sensitive photodetectors via electron-donor control
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201908108
– volume: 143
  start-page: 8437
  issue: 22
  year: 2021
  end-page: 8445
  ident: CR47
  article-title: Chiral 2D-perovskite nanowires for stokes photodetectors
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c02675
– volume: 5
  start-page: 3731
  issue: 9
  year: 2018
  end-page: 3738
  ident: CR68
  article-title: Polarized ferroelectric field-enhanced self-powered perovskite photodetector
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.8b00770
– volume: 17
  start-page: 2102884
  issue: 40
  year: 2021
  ident: CR112
  article-title: Heterogeneous integration of chiral lead-chloride perovskite crystals with Si wafer for boosted circularly polarized light detection in solar-blind ultraviolet region
  publication-title: Small
  doi: 10.1002/smll.202102884
– volume: 9
  start-page: 969
  issue: 12
  year: 2014
  end-page: 980
  ident: CR1
  article-title: Advancing the speed, sensitivity and accuracy of biomolecular detection using multi-length-scale engineering
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.261
– volume: 20
  start-page: 320
  issue: 1
  year: 2020
  end-page: 328
  ident: CR24
  article-title: Detector-only spectrometer based on structurally colored silicon nanowires and a reconstruction algorithm
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b03862
– volume: 8
  start-page: 2000149
  issue: 9
  year: 2020
  ident: CR84
  article-title: Minute-scale rapid crystallization of a highly dichroic 2D hybrid perovskite crystal toward efficient polarization-sensitive photodetector
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.202000149
– volume: 17
  start-page: 394
  issue: 5
  year: 2018
  end-page: 405
  ident: CR70
  article-title: Genesis, Challenges and opportunities for colloidal lead halide perovskite nanocrystals
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0018-4
– volume: 7
  start-page: 36722
  issue: 58
  year: 2017
  end-page: 36727
  ident: CR49
  article-title: High-performance transparent ultraviolet photodetectors based on inorganic perovskite CsPbCl nanocrystals
  publication-title: RSC Adv.
  doi: 10.1039/c7ra06597c
– volume: 144
  start-page: 20315
  issue: 44
  year: 2022
  end-page: 20322
  ident: CR69
  article-title: Soft multiaxial molecular ferroelectric thin films with self-powered broadband photodetection
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c07892
– volume: 4
  start-page: 794
  issue: 3
  year: 2021
  end-page: 820
  ident: CR108
  article-title: Chiral halide perovskite crystals for optoelectronic applications
  publication-title: Matter
  doi: 10.1016/j.matt.2020.12.018
– volume: 4
  start-page: 630
  issue: 3
  year: 2016
  end-page: 636
  ident: CR154
  article-title: A self-powered organolead halide perovskite single crystal photodetector driven by a dvd-based triboelectric nanogenerator
  publication-title: J. Mater. Chem. C
  doi: 10.1039/c5tc03342j
– volume: 6
  start-page: 1800679
  issue: 22
  year: 2018
  ident: CR98
  article-title: Flexible linearly polarized photodetectors based on all-inorganic perovskite CsPbI nanowires
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201800679
– volume: 9
  start-page: 687
  issue: 10
  year: 2015
  end-page: 694
  ident: CR135
  article-title: Filterless narrowband visible photodetectors
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2015.175
– volume: 30
  start-page: 1706986
  issue: 21
  year: 2018
  ident: CR153
  article-title: Ultrahigh-performance self-powered flexible double-twisted fibrous broadband perovskite photodetector
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706986
– volume: 13
  start-page: 3454
  issue: 1
  year: 2022
  ident: CR107
  article-title: Organic donor-acceptor heterojunctions for high performance circularly polarized light detection
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-31186-7
– volume: 10
  start-page: 2102227
  issue: 3
  year: 2021
  ident: CR109
  article-title: Lead-free chiral 2D double perovskite microwire arrays for circularly polarized light detection
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.202102227
– volume: 46
  start-page: 5204
  issue: 17
  year: 2017
  end-page: 5236
  ident: CR5
  article-title: Perovskite-based photodetectors: materials and devices
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c6cs00896h
– volume: 16
  start-page: 159
  issue: 2
  year: 2021
  end-page: 165
  ident: CR94
  article-title: Deterministic fabrication of arbitrary vertical heterostructures of two-dimensional ruddlesden-popper halide perovskites
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-00802-2
– volume: 10
  start-page: 895
  issue: 6
  year: 2016
  end-page: 921
  ident: CR2
  article-title: State-of-the-art all-silicon sub-bandgap photodetectors at telecom and datacom wavelengths
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.201600065
– volume: 28
  start-page: 4766
  issue: 24
  year: 2016
  end-page: 4802
  ident: CR4
  article-title: Organic photodiodes: the future of full-color detection and image sensing
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201505405
– volume: 4
  start-page: 1643
  year: 2013
  ident: CR141
  article-title: Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2642
– volume: 141
  start-page: 14520
  issue: 37
  year: 2019
  end-page: 14523
  ident: CR22
  article-title: Bulk photovoltaic effect in a pair of chiral-polar layered perovskite-type lead iodides altered by chirality of organic cations
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b06815
– volume: 35
  start-page: 2207317
  issue: 1
  year: 2022
  ident: CR131
  article-title: Polarization-tunable perovskite light-emitting metatransistor
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202207317
– volume: 32
  start-page: 2000004
  issue: 22
  year: 2020
  ident: CR156
  article-title: Flexible and self-powered photodetector arrays based on all-inorganic CsPbBr(3) quantum dots
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202000004
– volume: 10
  start-page: 707
  issue: 8
  year: 2015
  end-page: 713
  ident: CR82
  article-title: Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.112
– volume: 17
  start-page: 460
  issue: 1
  year: 2017
  end-page: 466
  ident: CR95
  article-title: Vapor-phase epitaxial growth of aligned nanowire networks of cesium lead halide perovskites (CsPbX , X = Cl, Br, I)
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b04450
– volume: 10
  start-page: 333
  issue: 5
  year: 2016
  end-page: 339
  ident: CR42
  article-title: Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2016.41
– volume: 28
  start-page: 7264
  issue: 33
  year: 2016
  end-page: 7268
  ident: CR45
  article-title: Fast and sensitive solution-processed visible-blind perovskite uv photodetectors
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601196
– volume: 13
  start-page: 9473
  issue: 8
  year: 2019
  end-page: 9481
  ident: CR120
  article-title: Aqueous synthesis of low-dimensional lead halide perovskites for room-temperature circularly polarized light emission and detection
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b04437
– volume: 9
  start-page: 100086
  year: 2022
  ident: CR58
  article-title: Chiral 1D perovskite microwire arrays for circularly polarized light detection
  publication-title: Giant
  doi: 10.1016/j.giant.2021.100086
– volume: 29
  start-page: 1604268
  issue: 9
  year: 2017
  ident: CR127
  article-title: Organometallic perovskite metasurfaces
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604268
– volume: 10
  start-page: 1927
  issue: 1
  year: 2019
  ident: CR21
  article-title: Circularly polarized light detection using chiral hybrid perovskite
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09942-z
– volume: 6
  start-page: 1801246
  issue: 23
  year: 2018
  ident: CR104
  article-title: Circularly polarized luminescent carbon dot nanomaterials of helical superstructures for circularly polarized light detection
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201801246
– volume: 31
  start-page: 1904155
  issue: 48
  year: 2019
  ident: CR89
  article-title: 2D perovskites with giant excitonic optical nonlinearities for high-performance sub-bandgap photodetection
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201904155
– volume: 108
  start-page: 034502
  issue: 3
  year: 2010
  ident: CR139
  article-title: Enhancing spectral contrast in organic red-light photodetectors based on a light-absorbing and exciton-blocking layered system
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3466766
– volume: 15
  start-page: 1902135
  issue: 36
  year: 2019
  ident: CR155
  article-title: Atomic-layer deposition-assisted double-side interfacial engineering for high-performance flexible and stable CsPbBr(3) perovskite photodetectors toward visible light communication applications
  publication-title: Small
  doi: 10.1002/smll.201902135
– volume: 114
  start-page: 7216
  issue: 28
  year: 2017
  end-page: 7221
  ident: CR90
  article-title: Spatially resolved multicolor CsPbX nanowire heterojunctions via anion exchange
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1703860114
– volume: 15
  start-page: 2100183
  issue: 10
  year: 2021
  ident: CR15
  article-title: 2D perovskite single crystals for photodetectors: from macro-to microscale
  publication-title: Phys. Status Solidi RRL
  doi: 10.1002/pssr.202100183
– volume: 365
  start-page: 1017
  year: 2019
  end-page: 1020
  ident: CR20
  article-title: Single-nanowire spectrometers
  publication-title: Science
  doi: 10.1126/science.aax8814
– volume: 30
  start-page: 1704611
  issue: 8
  year: 2018
  ident: CR66
  article-title: A self-powered and flexible organometallic halide perovskite photodetector with very high detectivity
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704611
– volume: 4
  start-page: 401
  issue: 2
  year: 2022
  end-page: 409
  ident: CR25
  article-title: Building supramolecular chirality in bulk heterojunctions enables amplified dissymmetry current for high-performing circularly polarized light detection
  publication-title: ACS Mater. Lett.
  doi: 10.1021/acsmaterialslett.1c00726
– volume: 3
  start-page: 2100335
  issue: 5
  year: 2022
  ident: CR80
  article-title: Recent progress on perovskite photodetectors for narrowband detection
  publication-title: Adv. Photonics Res.
  doi: 10.1002/adpr.202100335
– volume: 103
  start-page: 191108
  issue: 19
  year: 2013
  ident: CR140
  article-title: Al Ga N-based back-illuminated solar-blind photodetectors with external quantum efficiency of 89%
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4829065
– volume: 116
  start-page: 053301
  issue: 5
  year: 2020
  ident: CR106
  article-title: Helical-chiroptical nanowires generated orbital angular momentum for the detection of circularly polarized light
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5141102
– volume: 9
  start-page: 5302
  issue: 1
  year: 2018
  ident: CR44
  article-title: Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07440-2
– volume: 6
  start-page: eabd3274
  issue: 46
  year: 2020
  ident: CR121
  article-title: Direct detection of circular polarized light in helical 1D perovskite-based photodiode
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abd3274
– volume: 4
  start-page: 8304
  issue: 35
  year: 2016
  end-page: 8312
  ident: CR152
  article-title: Schottky junctions on perovskite single crystals: light-modulated dielectric constant and self-biased photodetection
  publication-title: J. Mater. Chem. C
  doi: 10.1039/c6tc02828d
– volume: 28
  start-page: 1800283
  issue: 19
  year: 2018
  ident: CR59
  article-title: Polarized optoelectronics of CsPbX (x = Cl, Br, I) perovskite nanoplates with tunable size and thickness
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201800283
– volume: 536
  start-page: 312
  issue: 7616
  year: 2016
  end-page: 316
  ident: CR31
  article-title: High-efficiency two-dimensional ruddlesden-popper perovskite solar cells
  publication-title: Nature
  doi: 10.1038/nature18306
– volume: 28
  start-page: 2043
  issue: 10
  year: 2016
  end-page: 2048
  ident: CR136
  article-title: A highly sensitive narrowband nanocomposite photodetector with gain
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503774
– volume: 5
  start-page: eaav8141
  year: 2019
  ident: CR75
  article-title: Perovskite nanowire–block copolymer composites with digitally programmable polarization anisotropy
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav8141
– volume: 16
  start-page: 7446
  issue: 12
  year: 2016
  end-page: 7454
  ident: CR86
  article-title: Passivated single-crystalline CH NH PbI nanowire photodetector with high detectivity and polarization sensitivity
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b03119
– volume: 3
  start-page: 657
  issue: 4
  year: 2022
  end-page: 667
  ident: CR118
  article-title: Reversible phase transition for switchable second harmonic generation in 2D perovskite microwires
  publication-title: SmartMat
  doi: 10.1002/smm2.1120
– volume: 9
  start-page: 968
  issue: 6
  year: 2021
  ident: CR28
  article-title: Lead–halide perovskites for next-generation self-powered photodetectors: a comprehensive review
  publication-title: Photonics Res.
  doi: 10.1364/prj.418450
– volume: 33
  start-page: 2006691
  issue: 26
  year: 2021
  ident: CR16
  article-title: Lead-free perovskite photodetectors: progress, challenges, and opportunities
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202006691
– volume: 7
  start-page: 1741
  issue: 7
  year: 2019
  end-page: 1791
  ident: CR18
  article-title: Recent progress on highly sensitive perovskite photodetectors
  publication-title: J. Mater. Chem. C
  doi: 10.1039/c8tc06089d
– volume: 14
  start-page: 14455
  issue: 12
  year: 2022
  end-page: 14465
  ident: CR145
  article-title: Spectrum reconstruction with filter-free photodetectors based on graded-band-gap perovskite quantum dot heterojunctions
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c24962
– volume: 13
  start-page: 602
  issue: 9
  year: 2019
  end-page: 608
  ident: CR50
  article-title: Highly sensitive X-ray detector made of layered perovskite-like (NH ) Bi I single crystal with anisotropic response
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-019-0466-7
– volume: 14
  start-page: 36781
  issue: 32
  year: 2022
  end-page: 36788
  ident: CR125
  article-title: Direct detection of near-infrared circularly polarized light via precisely designed chiral perovskite heterostructures
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c07208
– volume: 7
  start-page: 1261
  issue: 7
  year: 2021
  end-page: 1268
  ident: CR111
  article-title: Great amplification of circular polarization sensitivity via heterostructure engineering of a chiral two-dimensional hybrid perovskite crystal with a three-dimensional MAPbI crystal
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.1c00649
– volume: 33
  start-page: 2003852
  issue: 11
  year: 2021
  ident: CR85
  article-title: Oriented perovskite growth regulation enables sensitive broadband detection and imaging of polarized photons covering 300–1050 nm
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202003852
– volume: 367
  start-page: 1018
  year: 2020
  end-page: 1021
  ident: CR129
  article-title: Ultrafast control of vortex microlasers
  publication-title: Science
  doi: 10.1126/science.aba459
– volume: 5
  start-page: 1600704
  issue: 2
  year: 2017
  ident: CR157
  article-title: Inorganic lead halide perovskite single crystals: phase-selective low-temperature growth, carrier transport properties, and self-powered photodetection
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201600704
– volume: 10
  start-page: 2102436
  issue: 6
  year: 2022
  ident: CR83
  article-title: Anisotropic low-dimensional materials for polarization-sensitive photodetectors: From materials to devices
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.202102436
– volume: 59
  start-page: 264
  issue: 1
  year: 2020
  end-page: 305
  ident: CR73
  article-title: Crystal structures of perovskite halide compounds used for solar cells
  publication-title: Rev. Adv. Mater. Sci.
  doi: 10.1515/rams-2020-0015
– volume: 6
  start-page: 8379
  issue: 1
  year: 2015
  ident: CR126
  article-title: Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9379
– volume: 13
  start-page: 3659
  issue: 3
  year: 2019
  end-page: 3665
  ident: CR46
  article-title: Chiral 2D perovskites with a high degree of circularly polarized photoluminescence
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b00302
– volume: 9
  start-page: 11310
  issue: 11
  year: 2015
  end-page: 11316
  ident: CR150
  article-title: High-performance organolead halide perovskite-based self-powered triboelectric photodetector
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b04995
– volume: 47
  start-page: 565
  issue: 3
  year: 2022
  ident: 1161_CR57
  publication-title: Opt. Lett.
  doi: 10.1364/OL.441505
– volume: 29
  start-page: 1604268
  issue: 9
  year: 2017
  ident: 1161_CR127
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604268
– volume: 32
  start-page: 2200385
  issue: 24
  year: 2022
  ident: 1161_CR53
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202200385
– volume: 11
  start-page: 1689
  issue: 5
  year: 2020
  ident: 1161_CR114
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b03718
– volume: 59
  start-page: 264
  issue: 1
  year: 2020
  ident: 1161_CR73
  publication-title: Rev. Adv. Mater. Sci.
  doi: 10.1515/rams-2020-0015
– volume: 14
  start-page: 1601
  issue: 1
  year: 2022
  ident: 1161_CR102
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c20851
– volume: 6
  start-page: 1901134
  issue: 19
  year: 2019
  ident: 1161_CR60
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201901134
– volume: 10
  start-page: 2102227
  issue: 3
  year: 2021
  ident: 1161_CR109
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.202102227
– volume: 34
  start-page: 2200221
  issue: 33
  year: 2022
  ident: 1161_CR27
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202200221
– volume: 30
  start-page: 1908894
  issue: 14
  year: 2020
  ident: 1161_CR13
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201908894
– volume: 14
  start-page: 8816
  issue: 7
  year: 2020
  ident: 1161_CR76
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c03418
– volume: 12
  start-page: 44248
  issue: 39
  year: 2020
  ident: 1161_CR87
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c10062
– volume: 15
  start-page: 1902135
  issue: 36
  year: 2019
  ident: 1161_CR155
  publication-title: Small
  doi: 10.1002/smll.201902135
– volume: 32
  start-page: 2206999
  issue: 45
  year: 2022
  ident: 1161_CR63
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202206999
– volume: 46
  start-page: 5204
  issue: 17
  year: 2017
  ident: 1161_CR5
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c6cs00896h
– volume: 13
  start-page: 1143
  issue: 12
  year: 2018
  ident: 1161_CR19
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0278-9
– volume: 103
  start-page: 191108
  issue: 19
  year: 2013
  ident: 1161_CR140
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4829065
– volume: 9
  start-page: 969
  issue: 12
  year: 2014
  ident: 1161_CR1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.261
– volume: 29
  start-page: 15279
  issue: 10
  year: 2021
  ident: 1161_CR134
  publication-title: Opt. Express
  doi: 10.1364/OE.424443
– volume: 31
  start-page: 1904155
  issue: 48
  year: 2019
  ident: 1161_CR89
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201904155
– volume: 28
  start-page: 10794
  issue: 48
  year: 2016
  ident: 1161_CR148
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603573
– volume: 9
  start-page: 5302
  issue: 1
  year: 2018
  ident: 1161_CR44
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07440-2
– volume: 11
  start-page: 4699
  issue: 1
  year: 2020
  ident: 1161_CR115
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18485-7
– volume: 29
  start-page: 1605993
  issue: 16
  year: 2017
  ident: 1161_CR55
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605993
– volume: 4
  start-page: 851
  issue: 5
  year: 2017
  ident: 1161_CR123
  publication-title: Mater. Horiz.
  doi: 10.1039/c7mh00197e
– volume: 20
  start-page: 2625
  issue: 4
  year: 2020
  ident: 1161_CR23
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c00171
– volume: 15
  start-page: 1902890
  issue: 39
  year: 2019
  ident: 1161_CR92
  publication-title: Small
  doi: 10.1002/smll.201902890
– volume: 6
  start-page: 8724
  year: 2015
  ident: 1161_CR99
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9724
– volume: 29
  start-page: 1808668
  issue: 11
  year: 2019
  ident: 1161_CR105
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201808668
– volume: 4
  start-page: 8304
  issue: 35
  year: 2016
  ident: 1161_CR152
  publication-title: J. Mater. Chem. C
  doi: 10.1039/c6tc02828d
– volume: 18
  start-page: 7628
  issue: 12
  year: 2018
  ident: 1161_CR11
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b03209
– volume: 32
  start-page: 2000004
  issue: 22
  year: 2020
  ident: 1161_CR156
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202000004
– volume: 9
  start-page: 10921
  issue: 12
  year: 2017
  ident: 1161_CR54
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b02213
– volume: 9
  start-page: 162
  year: 2020
  ident: 1161_CR143
  publication-title: Light Sci. Appl.
  doi: 10.1038/s41377-020-00400-w
– volume: 17
  start-page: 2482
  issue: 4
  year: 2017
  ident: 1161_CR43
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b00166
– volume: 33
  start-page: 2003309
  issue: 7
  year: 2021
  ident: 1161_CR8
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202003309
– volume: 141
  start-page: 14520
  issue: 37
  year: 2019
  ident: 1161_CR22
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b06815
– volume: 13
  start-page: 9473
  issue: 8
  year: 2019
  ident: 1161_CR120
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b04437
– volume: 31
  start-page: 1808088
  issue: 16
  year: 2019
  ident: 1161_CR113
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201808088
– volume: 8
  start-page: 2100569
  issue: 14
  year: 2021
  ident: 1161_CR7
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202100569
– volume: 562
  start-page: 245
  issue: 7726
  year: 2018
  ident: 1161_CR40
  publication-title: Nature
  doi: 10.1038/s41586-018-0575-3
– volume: 33
  start-page: 2214094
  year: 2023
  ident: 1161_CR48
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202214094
– volume: 7
  start-page: 36722
  issue: 58
  year: 2017
  ident: 1161_CR49
  publication-title: RSC Adv.
  doi: 10.1039/c7ra06597c
– volume: 4
  start-page: 1643
  year: 2013
  ident: 1161_CR141
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2642
– volume: 58
  start-page: 16456
  issue: 46
  year: 2019
  ident: 1161_CR61
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201908743
– volume: 30
  start-page: 1801805
  issue: 31
  year: 2018
  ident: 1161_CR96
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801805
– volume: 10
  start-page: 806
  issue: 1
  year: 2019
  ident: 1161_CR142
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08768-z
– volume: 10
  start-page: 1927
  issue: 1
  year: 2019
  ident: 1161_CR21
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09942-z
– volume: 116
  start-page: 053301
  issue: 5
  year: 2020
  ident: 1161_CR106
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5141102
– volume: 9
  start-page: 968
  issue: 6
  year: 2021
  ident: 1161_CR28
  publication-title: Photonics Res.
  doi: 10.1364/prj.418450
– volume: 143
  start-page: 8437
  issue: 22
  year: 2021
  ident: 1161_CR47
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c02675
– volume: 555
  start-page: 497
  issue: 7697
  year: 2018
  ident: 1161_CR39
  publication-title: Nature
  doi: 10.1038/nature25989
– volume: 108
  start-page: 034502
  issue: 3
  year: 2010
  ident: 1161_CR139
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3466766
– volume: 371
  start-page: 480
  issue: 6528
  year: 2021
  ident: 1161_CR26
  publication-title: Science
  doi: 10.1126/science.abe0722
– volume: 13
  start-page: 1215
  issue: 5
  year: 2022
  ident: 1161_CR14
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.1c04225
– volume: 7
  start-page: 1741
  issue: 7
  year: 2019
  ident: 1161_CR18
  publication-title: J. Mater. Chem. C
  doi: 10.1039/c8tc06089d
– volume: 4
  start-page: 630
  issue: 3
  year: 2016
  ident: 1161_CR154
  publication-title: J. Mater. Chem. C
  doi: 10.1039/c5tc03342j
– volume: 7
  start-page: 1261
  issue: 7
  year: 2021
  ident: 1161_CR111
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.1c00649
– volume: 17
  start-page: 460
  issue: 1
  year: 2017
  ident: 1161_CR95
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b04450
– volume: 113
  start-page: 1993
  issue: 8
  year: 2016
  ident: 1161_CR34
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1600789113
– volume: 144
  start-page: 20315
  issue: 44
  year: 2022
  ident: 1161_CR69
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c07892
– volume: 5
  start-page: eaav8141
  year: 2019
  ident: 1161_CR75
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav8141
– volume: 536
  start-page: 312
  issue: 7616
  year: 2016
  ident: 1161_CR31
  publication-title: Nature
  doi: 10.1038/nature18306
– volume: 29
  start-page: 1606859
  issue: 23
  year: 2017
  ident: 1161_CR38
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606859
– volume: 61
  start-page: 202205939
  issue: 32
  year: 2022
  ident: 1161_CR64
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202205939
– volume: 35
  start-page: 2207317
  issue: 1
  year: 2022
  ident: 1161_CR131
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202207317
– volume: 583
  start-page: 790
  issue: 7818
  year: 2020
  ident: 1161_CR100
  publication-title: Nature
  doi: 10.1038/s41586-020-2526-z
– volume: 28
  start-page: 403
  issue: 3
  year: 2016
  ident: 1161_CR3
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503534
– volume: 13
  start-page: 602
  issue: 9
  year: 2019
  ident: 1161_CR50
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-019-0466-7
– volume: 28
  start-page: 7264
  issue: 33
  year: 2016
  ident: 1161_CR45
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601196
– volume: 367
  start-page: 1018
  year: 2020
  ident: 1161_CR129
  publication-title: Science
  doi: 10.1126/science.aba459
– volume: 33
  start-page: 2006691
  issue: 26
  year: 2021
  ident: 1161_CR16
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202006691
– volume: 28
  start-page: 1800283
  issue: 19
  year: 2018
  ident: 1161_CR59
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201800283
– volume: 4
  start-page: 487
  issue: 4
  year: 2010
  ident: 1161_CR10
  publication-title: Food Bioprocess. Technol.
  doi: 10.1007/s11947-010-0411-8
– volume: 59
  start-page: 18933
  issue: 43
  year: 2020
  ident: 1161_CR56
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202005092
– volume: 32
  start-page: 2001998
  issue: 28
  year: 2020
  ident: 1161_CR103
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202001998
– volume: 11
  start-page: 633
  issue: 7
  year: 2016
  ident: 1161_CR97
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.44
– volume: 60
  start-page: 8415
  issue: 15
  year: 2021
  ident: 1161_CR124
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202013947
– volume: 5
  start-page: 423
  issue: 6
  year: 2020
  ident: 1161_CR6
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-020-0181-5
– volume: 10
  start-page: 2102436
  issue: 6
  year: 2022
  ident: 1161_CR83
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.202102436
– volume: 9
  start-page: 679
  issue: 10
  year: 2015
  ident: 1161_CR138
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2015.156
– volume: 10
  start-page: 895
  issue: 6
  year: 2016
  ident: 1161_CR2
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.201600065
– volume: 5
  start-page: 1600704
  issue: 2
  year: 2017
  ident: 1161_CR157
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201600704
– volume: 29
  start-page: 1605242
  issue: 41
  year: 2017
  ident: 1161_CR9
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605242
– volume: 59
  start-page: 6442
  issue: 16
  year: 2020
  ident: 1161_CR110
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201915912
– volume: 12
  start-page: 528
  issue: 9
  year: 2018
  ident: 1161_CR119
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-018-0220-6
– volume: 28
  start-page: 8132
  issue: 22
  year: 2016
  ident: 1161_CR74
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b01329
– volume: 30
  start-page: 173
  year: 2016
  ident: 1161_CR147
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.10.009
– volume: 8
  start-page: 632
  year: 2020
  ident: 1161_CR101
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2020.00632
– volume: 14
  start-page: 636
  issue: 6
  year: 2015
  ident: 1161_CR33
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4271
– volume: 5
  start-page: 3731
  issue: 9
  year: 2018
  ident: 1161_CR68
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.8b00770
– volume: 9
  start-page: 11310
  issue: 11
  year: 2015
  ident: 1161_CR150
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b04995
– volume: 10
  start-page: 699
  issue: 11
  year: 2016
  ident: 1161_CR35
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2016.185
– volume: 347
  start-page: 519
  issue: 6221
  year: 2015
  ident: 1161_CR29
  publication-title: Science
  doi: 10.1126/science.aaa27
– volume: 14
  start-page: 36781
  issue: 32
  year: 2022
  ident: 1161_CR125
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c07208
– volume: 6
  start-page: 1800679
  issue: 22
  year: 2018
  ident: 1161_CR98
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201800679
– volume: 30
  start-page: 1704611
  issue: 8
  year: 2018
  ident: 1161_CR66
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704611
– volume: 13
  start-page: 3454
  issue: 1
  year: 2022
  ident: 1161_CR107
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-31186-7
– volume: 6
  start-page: 1801246
  issue: 23
  year: 2018
  ident: 1161_CR104
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201801246
– volume: 5
  start-page: 2000513
  issue: 10
  year: 2020
  ident: 1161_CR52
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.202000513
– volume: 9
  start-page: 100086
  year: 2022
  ident: 1161_CR58
  publication-title: Giant
  doi: 10.1016/j.giant.2021.100086
– volume: 4
  start-page: 794
  issue: 3
  year: 2021
  ident: 1161_CR108
  publication-title: Matter
  doi: 10.1016/j.matt.2020.12.018
– volume: 33
  start-page: 2003852
  issue: 11
  year: 2021
  ident: 1161_CR85
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202003852
– volume: 141
  start-page: 2623
  issue: 6
  year: 2019
  ident: 1161_CR81
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b12948
– volume: 121
  start-page: 102856
  year: 2020
  ident: 1161_CR12
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2020.102856
– volume: 30
  start-page: 1804450
  issue: 46
  year: 2018
  ident: 1161_CR79
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804450
– volume: 26
  start-page: 1296
  issue: 8
  year: 2016
  ident: 1161_CR149
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201504477
– volume: 13
  start-page: 4560
  issue: 1
  year: 2022
  ident: 1161_CR132
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-32309-w
– volume: 10
  start-page: 391
  issue: 5
  year: 2015
  ident: 1161_CR30
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.90
– volume: 28
  start-page: 4766
  issue: 24
  year: 2016
  ident: 1161_CR4
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201505405
– volume: 35
  start-page: 2207771
  issue: 3
  year: 2023
  ident: 1161_CR88
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202207771
– volume: 30
  start-page: 1706986
  issue: 21
  year: 2018
  ident: 1161_CR153
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706986
– volume: 32
  start-page: 1908108
  issue: 14
  year: 2020
  ident: 1161_CR144
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201908108
– volume: 8
  start-page: 2000149
  issue: 9
  year: 2020
  ident: 1161_CR84
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.202000149
– volume: 5
  start-page: 1700672
  issue: 22
  year: 2017
  ident: 1161_CR137
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201700672
– volume: 4
  start-page: 3835
  issue: 12
  year: 2021
  ident: 1161_CR122
  publication-title: Matter
  doi: 10.1016/j.matt.2021.11.011
– volume: 13
  start-page: 1551
  issue: 1
  year: 2022
  ident: 1161_CR78
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29253-0
– volume: 16
  start-page: 159
  issue: 2
  year: 2021
  ident: 1161_CR94
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-00802-2
– volume: 12
  start-page: 284
  issue: 1
  year: 2021
  ident: 1161_CR151
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20530-4
– volume: 4
  start-page: 401
  issue: 2
  year: 2022
  ident: 1161_CR25
  publication-title: ACS Mater. Lett.
  doi: 10.1021/acsmaterialslett.1c00726
– volume: 24
  start-page: 7373
  issue: 46
  year: 2014
  ident: 1161_CR133
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201402020
– volume: 16
  start-page: 7446
  issue: 12
  year: 2016
  ident: 1161_CR86
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b03119
– volume: 2
  start-page: 139
  issue: 1
  year: 2019
  ident: 1161_CR17
  publication-title: InfoMat
  doi: 10.1002/inf2.12053
– volume: 144
  start-page: 13823
  issue: 30
  year: 2022
  ident: 1161_CR77
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c05082
– volume: 17
  start-page: 394
  issue: 5
  year: 2018
  ident: 1161_CR70
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0018-4
– volume: 31
  start-page: 2105855
  issue: 48
  year: 2021
  ident: 1161_CR116
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202105855
– volume: 10
  start-page: 333
  issue: 5
  year: 2016
  ident: 1161_CR42
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2016.41
– volume: 370
  start-page: 459
  year: 2020
  ident: 1161_CR130
  publication-title: Science
  doi: 10.1126/science.abc853
– volume: 355
  start-page: 1288
  issue: 6331
  year: 2017
  ident: 1161_CR32
  publication-title: Science
  doi: 10.1126/science.aal4211
– volume: 17
  start-page: 2102884
  issue: 40
  year: 2021
  ident: 1161_CR112
  publication-title: Small
  doi: 10.1002/smll.202102884
– volume: 14
  start-page: 14455
  issue: 12
  year: 2022
  ident: 1161_CR145
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c24962
– volume: 32
  start-page: 1905298
  issue: 9
  year: 2020
  ident: 1161_CR71
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201905298
– volume: 3
  start-page: 2100335
  issue: 5
  year: 2022
  ident: 1161_CR80
  publication-title: Adv. Photonics Res.
  doi: 10.1002/adpr.202100335
– volume: 13
  start-page: 3659
  issue: 3
  year: 2019
  ident: 1161_CR46
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b00302
– volume: 29
  start-page: 1603995
  issue: 4
  year: 2017
  ident: 1161_CR91
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603995
– volume: 28
  start-page: 2043
  issue: 10
  year: 2016
  ident: 1161_CR136
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503774
– volume: 138
  start-page: 16612
  issue: 51
  year: 2016
  ident: 1161_CR41
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b11683
– volume: 14
  start-page: 39451
  issue: 34
  year: 2022
  ident: 1161_CR117
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c06856
– volume: 13
  start-page: 6106
  issue: 1
  year: 2022
  ident: 1161_CR67
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33934-1
– volume: 365
  start-page: 1017
  year: 2019
  ident: 1161_CR20
  publication-title: Science
  doi: 10.1126/science.aax8814
– volume: 17
  start-page: 2103855
  issue: 47
  year: 2021
  ident: 1161_CR62
  publication-title: Small
  doi: 10.1002/smll.202103855
– volume: 56
  start-page: 8158
  issue: 28
  year: 2017
  ident: 1161_CR36
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201703970
– volume: 10
  start-page: 707
  issue: 8
  year: 2015
  ident: 1161_CR82
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.112
– volume: 577
  start-page: 209
  issue: 7789
  year: 2020
  ident: 1161_CR93
  publication-title: Nature
  doi: 10.1038/s41586-019-1868-x
– volume: 34
  start-page: 2108408
  issue: 9
  year: 2021
  ident: 1161_CR65
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202108408
– volume: 114
  start-page: 7216
  issue: 28
  year: 2017
  ident: 1161_CR90
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1703860114
– volume: 3
  start-page: 657
  issue: 4
  year: 2022
  ident: 1161_CR118
  publication-title: SmartMat
  doi: 10.1002/smm2.1120
– volume: 6
  start-page: 8379
  issue: 1
  year: 2015
  ident: 1161_CR126
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9379
– volume: 15
  start-page: 2100183
  issue: 10
  year: 2021
  ident: 1161_CR15
  publication-title: Phys. Status Solidi RRL
  doi: 10.1002/pssr.202100183
– volume: 29
  start-page: 1806692
  issue: 10
  year: 2019
  ident: 1161_CR128
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201806692
– volume: 32
  start-page: 1907280
  issue: 16
  year: 2020
  ident: 1161_CR146
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201907280
– volume: 9
  start-page: 687
  issue: 10
  year: 2015
  ident: 1161_CR135
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2015.175
– volume: 9
  start-page: 2104598
  issue: 5
  year: 2022
  ident: 1161_CR51
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202104598
– volume: 6
  start-page: eabd3274
  issue: 46
  year: 2020
  ident: 1161_CR121
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abd3274
– volume: 8
  start-page: 742
  issue: 1
  year: 2017
  ident: 1161_CR37
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00788-x
– volume: 8
  start-page: 2004853
  issue: 9
  year: 2021
  ident: 1161_CR72
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202004853
– volume: 20
  start-page: 320
  issue: 1
  year: 2020
  ident: 1161_CR24
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b03862
SSID ssib052472754
ssib047348319
ssib044084216
ssj0000070760
ssib027973114
ssib051367739
Score 2.5243592
SecondaryResourceType review_article
Snippet Highlights Multidimensional detection of intensity, wavelength, polarization, and angle of the incidence light significantly accelerates the development of...
Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as...
HighlightsMultidimensional detection of intensity, wavelength, polarization, and angle of the incidence light significantly accelerates the development of...
Multidimensional detection of intensity, wavelength, polarization, and angle of the incidence light significantly accelerates the development of optical...
Highlights Multidimensional detection of intensity, wavelength, polarization, and angle of the incidence light significantly accelerates the development of...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 187
SubjectTerms Artificial intelligence
Automation
Crystal structure
Crystal structure design
Engineering
Gratings (spectra)
Luminous intensity
Manufacturing engineering
Micro/nano-structure manipulation
Molecular structure
Morphology
Multifunctional photodetectors
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
Optical communication
Optoelectronic devices
Optoelectronics
Perovskite materials
Perovskites
Photometers
Polarized light
Review
Robotics
Working mechanism
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAvAkUZCRuYDWO7TjhBoVVhRRUqVTqzXJsR61UErSbIu29P7wzzmN3eV645LDxRtbMZ8-MZ_wNIa8LBz6xKlOmXFky6W3NCo4Pr8A4BSldg4Fi9SU_OpWfz9TZVqsvrAkb6IEHwR1AtNQgA0JIeSND7q0Iuqi1cLzQHnwB3H3B5m0FU4CkTGNHpk1-ENsqyy2WGomcLmJDZKaQuExv-DFVJsGuj4Z2cKQ1prBipzrOWa7TfLyBE-_hYdfmlIH5Y5jX4Gy9Y-ViM4DfebC_FmL-lI2NRm5xj9wdvVP6fpDKfXIrtA_InS3OwofkOl7ZRXM4nCLS47DsfqzwEJgen3d950MfMwGrd3Sx7L7RamrAy04AD4EeLtfgkV7Sk8hce7UM9GOsIqF9RyssDzyAHb9jqzi46gAH8eSfVra9mJqNPSKni09fD4_Y2MqBOXChepbZ2lkVMgs6xJBRKojztLNcB6klMuJY8Ey8CsLW3NU1YEZ40Xhb1i71pRSPyV7bteEpod7lTRDBN6lqpK8zwIK2OWDBqbIAUSaET6I3buQ5x3Ybl2ZmaI7qMqAuE9Vl1gl5M__n-8Dy8dfRH1Cj80hk6I4_AG7NiFvzL9wmZH_Cgxm3jZXJiqKE-E0IlZBX82tY8JjFsW3ornAMoLmEvVgn5MkAn3kmQoN7qvHjxQ6wdqa6-6a9OI-k4kiUr1PJE_J2wuBmXn-WxbP_IYvn5HaGiydWCe2TPcBfeAG-Xl-_jMv6Bo45R5E
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagXOCAeBMoyEjcwCKJ7TjhBgurCimoUqnUW-TYDq1UYpSkSHvnhzPjPLYLBYnLHjazq4n92TPjGX9DyMvcgE8si5hJUxRMWF2zPMEPK8E4OSFMg4Fi-Tk7OBafTuTJdCmsn6vd55Rk2KmXy27YGjlmYGMYJg8StrlObkiI3RHXqy3neKqwG9M2N4gtlcUlhhqBfC58S2ImkbRMbbkxZSrApk9GdnSiFaavQpe6JGGZirPp9s3Vau1YuNAI4Crv9c8izN8yscHAre-Q25NnSt-NULpLrrn2Hrl1ia_wPvkZruuiKRxPEOmh6_yPHg-A6eGpH7x1Q8gC9G_puvPfaDk332VHgAVHV90GvNFzehRYay86Rz-EChI6eFpiaeAb2O0964Nw6QED4dSflro9mxuNPSDH649fVgdsauPADLhPA0t1bbR0qW6Ew3BRSIjxlNGJckIJZMPR4JVY6biuE1PXgBdueWN1UZvYFoI_JHutb91jQq3JGsedbWLZCFunteJKZ8oKI4schjIiyTz0lZk4zrHVxnm1sDOH6apguqowXdUmIq-W33wfGT7-Kf0eZ3SRRHbu8IXvvlbTYq8gwm-QtcPFCbxzZjV3KgddTZKDrimPyP6Mh2raMvoqzfMCYjfOZUReLI9hsWMGR7fOX6AMoLmAfVhF5NEIn0UTrsA1Vfjn-Q6wdlTdfdKenQZCcSTJV7FIIvJ6xuBWr7-PxZP_E39Kbqa4TEIt0D7ZA6S5Z-DRDfXzsIB_Ad8HPOg
  priority: 102
  providerName: Springer Nature
Title Multifunctional Perovskite Photodetectors: From Molecular-Scale Crystal Structure Design to Micro/Nano-scale Morphology Manipulation
URI https://link.springer.com/article/10.1007/s40820-023-01161-y
https://www.ncbi.nlm.nih.gov/pubmed/37515723
https://www.proquest.com/docview/2889585335
https://www.proquest.com/docview/2844090317
https://pubmed.ncbi.nlm.nih.gov/PMC10387041
https://doaj.org/article/132f1215e01f4e6da3e78b73c187d423
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9MwFLbYeoED4jcZozISN7CWxHaccEFrtzIhdaoYk3aLHNvZJo14tN2k3vnDec9N2pUfu-SQOJFjf37v2c_-PkLe5wZiYlnETJqiYMLqiuUJXqwE5-SEMDVOFMfH2dGp-Homz9oFt1m7rbKzicFQW29wjXwvzfMCQlvO5efrnwxVozC72kpobJEemOAcJl-9weHx5FuHqFShMtM6T4jyyuIOW41Abhe-JjSTSGCm1jyZMhXg31uHuwyoFaaygmJdkrBMxVl7Eiecx0P15piBG2SY30jYYsPbBVGAf0Wyf2_I_CMrG5zd6Al53EapdH8Jq6fkgWuekUd3uAufk1_h6C66xeVqIp24qb-d4WIwnVz4ubduHjICs090NPU_6LgT4mUngAtHh9MFRKZX9CQw2N5MHT0Iu0no3NMxbhPcA8vv2SwUHnvAQ8gA0LFuLjvRsRfkdHT4fXjEWkkHZiCUmrNUV0ZLl-paOJw6CgnzPWV0opxQAplxNEQoVjquq8RUFWCHW15bXVQmtoXgL8l24xv3mlBrstpxZ-tY1sJWaaW40pmywsgih6aMSNI1fWlavnOU3bgqV0zNobtK6K4ydFe5iMiH1TvXS7aPe0sPsEdXJZGpO9zw0_OyHfglzPZrZPBwcQL_nFnNncqhribJoa4pj8huh4eyNR-zcg32iLxbPYaBj9kc3Th_g2UAzQXYZBWRV0v4rGrCFYSpCj-ebwBro6qbT5rLi0AujoT5KhZJRD52GFzX6_9tsXP_b7whD1McFmEf0C7ZBmS5txDNzas-2cpHX_qktz84GIz67QCGu8NU4DUb9sM6yW93SUZC
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxJtAASPBCawmsR0nSAhBy7KlTVWprdRb6tgOrVSSsrsF7Z3fw29kxkl2uzx66yWHxIkmnvHM2GN_HyEvUgM5scxCJk2WMWF1ydIIL1ZCcHJCmAonivl2MtwXnw_kwRL51Z-FwW2VvU_0jto2BtfIV-M0zSC15Vy-O_3GkDUKq6s9hUZrFptu-gOmbOO3G-ug35dxPPi4tzZkHasAMxDNJyzWpdHSxboSDmcvQsKUQxkdKSeUQHAWDUHSSsd1GZmyBPG55ZXVWWlCmwkO371CrgrOMxxR6eBTb7-xQh6oeVUSyZzFOWwcgUgyfA6fJhEuTc1ROWUsIJvownubvissnHl-vChiiQqT7tyPP_2HXNEhg6DLsJoSselCbPUUBP_Km__e_vlHDdiH1sEtcrPLien71ohvkyVX3yE3ziEl3iU__UFhDMLt2iXdcaPm-xiXnunOUTNprJv4-sP4DR2Mmq8072l_2S5YoaNroynkwSd01-Plno0cXfd7V-ikoTluSlyFONOwsW-cN2B9vt5Ac10f9xRn98j-paj6Plmum9o9JNSapHLc2SqUlbBlXCqudKKsMDJLoSsDEvVdX5gOXR1JPk6KGS60V1cB6iq8uoppQF7N3jltsUUubP0BNTpribjg_kYz-lJ0bqaIeFwhXogLI_jnxGruVAqymigFWWMekJXeHorOWY2L-dAKyPPZY3AzWDvStWvOsA1YcwYRQAXkQWs-M0m4gqRY4cfTBcNaEHXxSX185KHMEZ5fhSIKyOveBudy_b8vHl38G8_IteFevlVsbWxvPibXYxwifgfSClkGK3NPII-clE_94KXk8LK9xW-qYH5I
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSAgOiGcJFDASN7A2ie044QZbVuWx1UqlUm-RYzu0Ukmq3RRp7_xwZpzXLhQkLntIJquJ_dkzkxl_Q8ir1IBPLLOQSZNlTFhdsDTCHyvBODkhTImB4vwwOTgWn07kycYpfl_t3qck2zMNyNJUNZMLW06Gg2_YJjlkYG8YJhIitr5ObkCkEmFR33TkH48VdmYa84TYXllssNUI5HbhI6GZRAIzNfJkyliAfe8MbutQK0xl-Y51UcQSFSbdSZyr1dqydr4pwFWe7J8Fmb9lZb2xm90ldzovlb5rYXWPXHPVfXJ7g7vwAfnpj-6iWWy_JtKFW9Y_VvgxmC5O66a2rvEZgdVbOlvW3-m8b8TLjgAXjk6Xa_BMz-mRZ7C9XDq676tJaFPTOZYJTmDnr9nKC89rwIPPANC5rs76pmMPyfHsw9fpAetaOjADrlTDYl0YLV2sS-EwdBQS4j1ldKScUAKZcTR4KFY6rovIFAVgh1teWp0VJrSZ4I_ITlVX7jGh1iSl486WoSyFLeJCcaUTZYWRWQpDGZCoH_rcdHzn2HbjPB-Ymv105TBduZ-ufB2Q18MzFy3bxz-l3-OMDpLI1O0v1Mtvebfwc4j2S2TwcGEE75xYzZ1KQVcTpaBrzAOy1-Mh77aPVR6naQZxHOcyIC-H27DwMZujK1dfogygOYM9WQVkt4XPoAlX4KYq_PN0C1hbqm7fqc5OPbk4EuarUEQBedNjcNTr72Px5P_EX5Cbi_1Z_uXj4een5FaMK8aXCO2RHQCdewaOXlM892v5FxjlRBk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multifunctional+Perovskite+Photodetectors%3A+From+Molecular-Scale+Crystal+Structure+Design+to+Micro%2FNano-scale+Morphology+Manipulation&rft.jtitle=Nano-micro+letters&rft.au=Zhao%2C+Yingjie&rft.au=Yin%2C+Xing&rft.au=Li%2C+Pengwei&rft.au=Ren%2C+Ziqiu&rft.date=2023-12-01&rft.pub=Springer+Nature+B.V&rft.issn=2311-6706&rft.eissn=2150-5551&rft.volume=15&rft.issue=1&rft.spage=187&rft_id=info:doi/10.1007%2Fs40820-023-01161-y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon