Multifunctional Perovskite Photodetectors: From Molecular-Scale Crystal Structure Design to Micro/Nano-scale Morphology Manipulation
Highlights Multidimensional detection of intensity, wavelength, polarization, and angle of the incidence light significantly accelerates the development of optical information technology and artificial intelligence fields. The first comprehensive overview of the advancement of multifunctional photod...
Saved in:
Published in | Nano-micro letters Vol. 15; no. 1; pp. 187 - 30 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
01.12.2023
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Highlights
Multidimensional detection of intensity, wavelength, polarization, and angle of the incidence light significantly accelerates the development of optical information technology and artificial intelligence fields.
The first comprehensive overview of the advancement of multifunctional photodetectors for perovskite semiconductors ranging from polarized light detection, spectral detection, and angle-sensing detection to self-powered detection is summarized.
The existing problems and perspectives are discussed which can inspire more researchers to rationally design new perovskite materials and micro/nano-structure for high-performance multifunctional photodetectors.
Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implementation of multifunctional detectors is based on the physical combination of optical lenses, gratings, and multiple photodetectors, the large size and its complex structure hinder the miniaturization, lightweight, and integration of devices. In contrast, perovskite materials have achieved remarkable progress in the field of multifunctional photodetectors due to their diverse crystal structures, simple morphology manipulation, and excellent optoelectronic properties. In this review, we first overview the crystal structures and morphology manipulation techniques of perovskite materials and then summarize the working mechanism and performance parameters of multifunctional photodetectors. Furthermore, the fabrication strategies of multifunctional perovskite photodetectors and their advancements are highlighted, including polarized light detection, spectral detection, angle-sensing detection, and self-powered detection. Finally, the existing problems of multifunctional detectors and the perspectives of their future development are presented. |
---|---|
AbstractList | Highlights
Multidimensional detection of intensity, wavelength, polarization, and angle of the incidence light significantly accelerates the development of optical information technology and artificial intelligence fields.
The first comprehensive overview of the advancement of multifunctional photodetectors for perovskite semiconductors ranging from polarized light detection, spectral detection, and angle-sensing detection to self-powered detection is summarized.
The existing problems and perspectives are discussed which can inspire more researchers to rationally design new perovskite materials and micro/nano-structure for high-performance multifunctional photodetectors.
Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implementation of multifunctional detectors is based on the physical combination of optical lenses, gratings, and multiple photodetectors, the large size and its complex structure hinder the miniaturization, lightweight, and integration of devices. In contrast, perovskite materials have achieved remarkable progress in the field of multifunctional photodetectors due to their diverse crystal structures, simple morphology manipulation, and excellent optoelectronic properties. In this review, we first overview the crystal structures and morphology manipulation techniques of perovskite materials and then summarize the working mechanism and performance parameters of multifunctional photodetectors. Furthermore, the fabrication strategies of multifunctional perovskite photodetectors and their advancements are highlighted, including polarized light detection, spectral detection, angle-sensing detection, and self-powered detection. Finally, the existing problems of multifunctional detectors and the perspectives of their future development are presented. Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implementation of multifunctional detectors is based on the physical combination of optical lenses, gratings, and multiple photodetectors, the large size and its complex structure hinder the miniaturization, lightweight, and integration of devices. In contrast, perovskite materials have achieved remarkable progress in the field of multifunctional photodetectors due to their diverse crystal structures, simple morphology manipulation, and excellent optoelectronic properties. In this review, we first overview the crystal structures and morphology manipulation techniques of perovskite materials and then summarize the working mechanism and performance parameters of multifunctional photodetectors. Furthermore, the fabrication strategies of multifunctional perovskite photodetectors and their advancements are highlighted, including polarized light detection, spectral detection, angle-sensing detection, and self-powered detection. Finally, the existing problems of multifunctional detectors and the perspectives of their future development are presented.Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implementation of multifunctional detectors is based on the physical combination of optical lenses, gratings, and multiple photodetectors, the large size and its complex structure hinder the miniaturization, lightweight, and integration of devices. In contrast, perovskite materials have achieved remarkable progress in the field of multifunctional photodetectors due to their diverse crystal structures, simple morphology manipulation, and excellent optoelectronic properties. In this review, we first overview the crystal structures and morphology manipulation techniques of perovskite materials and then summarize the working mechanism and performance parameters of multifunctional photodetectors. Furthermore, the fabrication strategies of multifunctional perovskite photodetectors and their advancements are highlighted, including polarized light detection, spectral detection, angle-sensing detection, and self-powered detection. Finally, the existing problems of multifunctional detectors and the perspectives of their future development are presented. Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implementation of multifunctional detectors is based on the physical combination of optical lenses, gratings, and multiple photodetectors, the large size and its complex structure hinder the miniaturization, lightweight, and integration of devices. In contrast, perovskite materials have achieved remarkable progress in the field of multifunctional photodetectors due to their diverse crystal structures, simple morphology manipulation, and excellent optoelectronic properties. In this review, we first overview the crystal structures and morphology manipulation techniques of perovskite materials and then summarize the working mechanism and performance parameters of multifunctional photodetectors. Furthermore, the fabrication strategies of multifunctional perovskite photodetectors and their advancements are highlighted, including polarized light detection, spectral detection, angle-sensing detection, and self-powered detection. Finally, the existing problems of multifunctional detectors and the perspectives of their future development are presented. Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implementation of multifunctional detectors is based on the physical combination of optical lenses, gratings, and multiple photodetectors, the large size and its complex structure hinder the miniaturization, lightweight, and integration of devices. In contrast, perovskite materials have achieved remarkable progress in the field of multifunctional photodetectors due to their diverse crystal structures, simple morphology manipulation, and excellent optoelectronic properties. In this review, we first overview the crystal structures and morphology manipulation techniques of perovskite materials and then summarize the working mechanism and performance parameters of multifunctional photodetectors. Furthermore, the fabrication strategies of multifunctional perovskite photodetectors and their advancements are highlighted, including polarized light detection, spectral detection, angle-sensing detection, and self-powered detection. Finally, the existing problems of multifunctional detectors and the perspectives of their future development are presented. "Image missing" Highlights Multidimensional detection of intensity, wavelength, polarization, and angle of the incidence light significantly accelerates the development of optical information technology and artificial intelligence fields. The first comprehensive overview of the advancement of multifunctional photodetectors for perovskite semiconductors ranging from polarized light detection, spectral detection, and angle-sensing detection to self-powered detection is summarized. The existing problems and perspectives are discussed which can inspire more researchers to rationally design new perovskite materials and micro/nano-structure for high-performance multifunctional photodetectors. HighlightsMultidimensional detection of intensity, wavelength, polarization, and angle of the incidence light significantly accelerates the development of optical information technology and artificial intelligence fields.The first comprehensive overview of the advancement of multifunctional photodetectors for perovskite semiconductors ranging from polarized light detection, spectral detection, and angle-sensing detection to self-powered detection is summarized.The existing problems and perspectives are discussed which can inspire more researchers to rationally design new perovskite materials and micro/nano-structure for high-performance multifunctional photodetectors.Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implementation of multifunctional detectors is based on the physical combination of optical lenses, gratings, and multiple photodetectors, the large size and its complex structure hinder the miniaturization, lightweight, and integration of devices. In contrast, perovskite materials have achieved remarkable progress in the field of multifunctional photodetectors due to their diverse crystal structures, simple morphology manipulation, and excellent optoelectronic properties. In this review, we first overview the crystal structures and morphology manipulation techniques of perovskite materials and then summarize the working mechanism and performance parameters of multifunctional photodetectors. Furthermore, the fabrication strategies of multifunctional perovskite photodetectors and their advancements are highlighted, including polarized light detection, spectral detection, angle-sensing detection, and self-powered detection. Finally, the existing problems of multifunctional detectors and the perspectives of their future development are presented. Multidimensional detection of intensity, wavelength, polarization, and angle of the incidence light significantly accelerates the development of optical information technology and artificial intelligence fields. The first comprehensive overview of the advancement of multifunctional photodetectors for perovskite semiconductors ranging from polarized light detection, spectral detection, and angle-sensing detection to self-powered detection is summarized. The existing problems and perspectives are discussed which can inspire more researchers to rationally design new perovskite materials and micro/nano-structure for high-performance multifunctional photodetectors. Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implementation of multifunctional detectors is based on the physical combination of optical lenses, gratings, and multiple photodetectors, the large size and its complex structure hinder the miniaturization, lightweight, and integration of devices. In contrast, perovskite materials have achieved remarkable progress in the field of multifunctional photodetectors due to their diverse crystal structures, simple morphology manipulation, and excellent optoelectronic properties. In this review, we first overview the crystal structures and morphology manipulation techniques of perovskite materials and then summarize the working mechanism and performance parameters of multifunctional photodetectors. Furthermore, the fabrication strategies of multifunctional perovskite photodetectors and their advancements are highlighted, including polarized light detection, spectral detection, angle-sensing detection, and self-powered detection. Finally, the existing problems of multifunctional detectors and the perspectives of their future development are presented. |
ArticleNumber | 187 |
Author | Zhao, Yingjie Ren, Ziqiu Yin, Xing Gu, Zhenkun Song, Yanlin Li, Pengwei Zhang, Yiqiang |
Author_xml | – sequence: 1 givenname: Yingjie surname: Zhao fullname: Zhao, Yingjie organization: College of Chemistry, Zhengzhou University – sequence: 2 givenname: Xing surname: Yin fullname: Yin, Xing organization: College of Chemistry, Zhengzhou University – sequence: 3 givenname: Pengwei surname: Li fullname: Li, Pengwei organization: College of Chemistry, Zhengzhou University – sequence: 4 givenname: Ziqiu surname: Ren fullname: Ren, Ziqiu organization: Henan Institute of Advanced Technology, Zhengzhou University – sequence: 5 givenname: Zhenkun surname: Gu fullname: Gu, Zhenkun email: guzhenkun@zzu.edu.cn organization: Henan Institute of Advanced Technology, Zhengzhou University – sequence: 6 givenname: Yiqiang surname: Zhang fullname: Zhang, Yiqiang organization: College of Chemistry, Zhengzhou University – sequence: 7 givenname: Yanlin surname: Song fullname: Song, Yanlin email: ylsong@iccas.ac.cn organization: College of Chemistry, Zhengzhou University, Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37515723$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1u1DAUhSNUREvpC7BAkdiwCfX1T5ywQWigUKkDlQpry3FuZlw88WA7lWbPg-OZaYF20ZUt-5zPRz73eXEw-hGL4iWQt0CIPI2cNJRUhLKKANRQbZ4URxQEqYQQcJD3DKCqJakPi5MYbUcE5ZJKwZ8Vh0wKEJKyo-L3fHLJDtNokvWjduUlBn8Tf9qE5eXSJ99jQpN8iO_Ks-BX5dw7NJPToboy2mE5C5uYsu8qhcmkKWD5EaNdjGXy5dya4E-_6tFXcSee-7BeeucXm3KuR7vOnO2zL4qng3YRT27X4-LH2afvsy_VxbfP57MPF5WpgaaK6s5ogVQPHDmImoumbaXRIJFLXtOaaWhJL5DpDkzX9bpjPRt63XaG9C1nx8X5ntt7fa3Wwa502Civrdod-LBQOiRrHCpgdID8nUggv1b3mqFsOskMNLLnlGXW-z1rPXUr7A2OKWh3D3r_ZrRLtfA3CghrJOGQCW9uCcH_mjAmtbLRoHN6RD9FRRvOSUsYyCx9_UB67aeQ69qqmlY0gjGRVa_-j_Q3y13bWdDsBbmWGAMOyti0ayAntC5HU9vZUvvZUnm21G621CZb6QPrHf1RE9ubYhaPCwz_Yj_i-gM4duSK |
CitedBy_id | crossref_primary_10_1021_acsanm_4c03567 crossref_primary_10_1002_adfm_202402166 crossref_primary_10_1002_smll_202402668 crossref_primary_10_1002_advs_202407634 crossref_primary_10_1002_adfm_202501020 crossref_primary_10_1039_D4TC02994A crossref_primary_10_1016_j_cclet_2024_109530 crossref_primary_10_1007_s42247_024_00834_7 crossref_primary_10_1002_adfm_202418968 crossref_primary_10_1007_s42247_023_00575_z crossref_primary_10_1016_j_snr_2024_100201 crossref_primary_10_1021_acs_cgd_4c00676 crossref_primary_10_1016_j_solener_2024_113205 crossref_primary_10_1002_smtd_202400709 crossref_primary_10_1016_j_nanoen_2024_109802 crossref_primary_10_1016_j_optmat_2024_115997 crossref_primary_10_1002_advs_202414430 crossref_primary_10_1021_acsami_4c09719 crossref_primary_10_1088_1361_6528_adae16 crossref_primary_10_1002_adma_202414649 crossref_primary_10_1038_s41377_024_01636_6 crossref_primary_10_1021_acsami_4c17285 crossref_primary_10_1021_acs_chemmater_3c02521 crossref_primary_10_1002_adfm_202404697 crossref_primary_10_1002_lpor_202400564 crossref_primary_10_1002_adma_202404740 crossref_primary_10_1002_admt_202401126 crossref_primary_10_1364_OL_533658 crossref_primary_10_1007_s40820_024_01465_7 crossref_primary_10_1016_j_mtelec_2025_100138 crossref_primary_10_1016_j_jmst_2025_01_035 crossref_primary_10_1016_j_optmat_2023_114652 crossref_primary_10_1002_anie_202413726 crossref_primary_10_1088_1361_6528_ad568e crossref_primary_10_1002_inf2_12602 crossref_primary_10_1002_ange_202413726 crossref_primary_10_1007_s40820_024_01501_6 crossref_primary_10_1039_D4TC01305K crossref_primary_10_1039_D4QI02090A crossref_primary_10_1007_s40820_024_01565_4 crossref_primary_10_1088_1674_1056_ad23d7 crossref_primary_10_1021_acsphotonics_4c01860 crossref_primary_10_1364_PRJ_520675 crossref_primary_10_1002_adom_202401544 crossref_primary_10_1021_jacs_4c14899 crossref_primary_10_1039_D4TA02884H |
Cites_doi | 10.1002/adma.201808088 10.1038/nature25989 10.1021/acsami.7b02213 10.1126/science.aaa27 10.1002/smll.201902890 10.1002/adma.201907280 10.1126/science.abc853 10.1038/s41467-022-32309-w 10.1038/s41467-017-00788-x 10.1007/s11947-010-0411-8 10.1002/adfm.202214094 10.1364/OE.424443 10.1002/adma.201801805 10.1038/s41586-019-1868-x 10.1002/adma.201605242 10.1038/nmat4271 10.1002/adfm.201402020 10.1021/jacs.6b11683 10.1038/s41377-020-00400-w 10.1016/j.nanoen.2016.10.009 10.1021/acs.nanolett.0c00171 10.1038/s41467-020-20530-4 10.1002/adom.201700672 10.1016/j.trc.2020.102856 10.1002/anie.202005092 10.1038/s41565-018-0278-9 10.1002/adfm.201504477 10.1364/OL.441505 10.1021/acsami.0c10062 10.1002/adma.201606859 10.1016/j.matt.2021.11.011 10.1021/acsami.2c06856 10.1002/adfm.201806692 10.1038/s41566-018-0220-6 10.1038/nnano.2015.90 10.1002/advs.202100569 10.1002/adfm.201908894 10.1002/adma.201605993 10.1073/pnas.1600789113 10.1002/advs.202104598 10.1002/inf2.12053 10.1002/adma.201804450 10.1002/adma.201603573 10.1038/ncomms9724 10.1002/adma.201905298 10.1021/jacs.2c05082 10.1038/nphoton.2016.185 10.1021/acs.jpclett.9b03718 10.1002/smll.202103855 10.1038/nnano.2016.44 10.1002/adma.202108408 10.1021/jacs.8b12948 10.1002/adfm.201808668 10.1002/anie.201703970 10.3389/fchem.2020.00632 10.1021/acsami.1c20851 10.1002/advs.202004853 10.1126/science.aal4211 10.1021/acs.jpclett.1c04225 10.1038/s41467-020-18485-7 10.1002/anie.202013947 10.1021/acs.nanolett.8b03209 10.1038/s41467-022-33934-1 10.1002/admt.202000513 10.1021/acsnano.0c03418 10.1038/nphoton.2015.156 10.1039/c7mh00197e 10.1021/acs.nanolett.7b00166 10.1002/adma.202003309 10.1002/anie.202205939 10.1002/adfm.202206999 10.1038/s41586-020-2526-z 10.1038/s41467-022-29253-0 10.1002/adma.201603995 10.1002/anie.201915912 10.1038/s41467-019-08768-z 10.1002/adfm.202200385 10.1021/acs.chemmater.6b01329 10.1002/anie.201908743 10.1002/adma.202207771 10.1002/adma.202001998 10.1002/adma.201503534 10.1038/s41578-020-0181-5 10.1126/science.abe0722 10.1002/advs.201901134 10.1002/adma.202200221 10.1038/s41586-018-0575-3 10.1002/adfm.202105855 10.1002/adma.201908108 10.1021/jacs.1c02675 10.1021/acsphotonics.8b00770 10.1002/smll.202102884 10.1038/nnano.2014.261 10.1021/acs.nanolett.9b03862 10.1002/adom.202000149 10.1038/s41563-018-0018-4 10.1039/c7ra06597c 10.1021/jacs.2c07892 10.1016/j.matt.2020.12.018 10.1039/c5tc03342j 10.1002/adom.201800679 10.1038/nphoton.2015.175 10.1002/adma.201706986 10.1038/s41467-022-31186-7 10.1002/adom.202102227 10.1039/c6cs00896h 10.1038/s41565-020-00802-2 10.1002/lpor.201600065 10.1002/adma.201505405 10.1038/ncomms2642 10.1021/jacs.9b06815 10.1002/adma.202207317 10.1002/adma.202000004 10.1038/nnano.2015.112 10.1021/acs.nanolett.6b04450 10.1038/nphoton.2016.41 10.1002/adma.201601196 10.1021/acsnano.9b04437 10.1016/j.giant.2021.100086 10.1002/adma.201604268 10.1038/s41467-019-09942-z 10.1002/adom.201801246 10.1002/adma.201904155 10.1063/1.3466766 10.1002/smll.201902135 10.1073/pnas.1703860114 10.1002/pssr.202100183 10.1126/science.aax8814 10.1002/adma.201704611 10.1021/acsmaterialslett.1c00726 10.1002/adpr.202100335 10.1063/1.4829065 10.1063/1.5141102 10.1038/s41467-018-07440-2 10.1126/sciadv.abd3274 10.1039/c6tc02828d 10.1002/adfm.201800283 10.1038/nature18306 10.1002/adma.201503774 10.1126/sciadv.aav8141 10.1021/acs.nanolett.6b03119 10.1002/smm2.1120 10.1364/prj.418450 10.1002/adma.202006691 10.1039/c8tc06089d 10.1021/acsami.1c24962 10.1038/s41566-019-0466-7 10.1021/acsami.2c07208 10.1021/acscentsci.1c00649 10.1002/adma.202003852 10.1126/science.aba459 10.1002/adom.201600704 10.1002/adom.202102436 10.1515/rams-2020-0015 10.1038/ncomms9379 10.1021/acsnano.9b00302 10.1021/acsnano.5b04995 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S P5Z P62 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
DOI | 10.1007/s40820-023-01161-y |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2150-5551 |
EndPage | 30 |
ExternalDocumentID | oai_doaj_org_article_132f1215e01f4e6da3e78b73c187d423 PMC10387041 37515723 10_1007_s40820_023_01161_y |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Shanghai Jiao Tong University – fundername: ; |
GroupedDBID | -02 -0B -SB -S~ 0R~ 4.4 5VR 5VS 8FE 8FG 92H 92I 92M 92R 93N 9D9 9DB AAFWJ AAJSJ AAKKN AAXDM ABDBF ABEEZ ABJCF ACACY ACGFS ACIWK ACUHS ACULB ADBBV ADINQ ADMLS AEGXH AENEX AFGXO AFKRA AFPKN AFUIB AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS ASPBG AVWKF BAPOH BCNDV BENPR BGLVJ C1A C24 C6C CAJEB CCEZO CCPQU CDRFL D1I EBLON EBS EJD ESX FA0 GROUPED_DOAJ GX1 HCIFZ IAO IHR IPNFZ ITC JUIAU KB. KQ8 KWQ L6V M7S MM. M~E OK1 P62 PDBOC PGMZT PIMPY PROAC PTHSS Q-- R-B RIG RNS RPM RSV RT2 SOJ T8R TCJ TGT TR2 TUS U1F U1G U5B U5L ~LU AASML AAYXX CITATION PHGZM PHGZT NPM ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c612t-2abca5e2af4e4156458997ca17e4746263a190d5e3ab1cbbdab3d3fda9bc0d943 |
IEDL.DBID | BENPR |
ISSN | 2311-6706 2150-5551 |
IngestDate | Wed Aug 27 01:32:43 EDT 2025 Thu Aug 21 18:41:32 EDT 2025 Fri Jul 11 00:08:24 EDT 2025 Wed Aug 13 04:33:19 EDT 2025 Wed Feb 19 02:22:17 EST 2025 Tue Jul 01 00:55:50 EDT 2025 Thu Apr 24 22:55:04 EDT 2025 Fri Feb 21 02:41:50 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Perovskite materials Multifunctional photodetectors Crystal structure design Working mechanism Micro/nano-structure manipulation |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c612t-2abca5e2af4e4156458997ca17e4746263a190d5e3ab1cbbdab3d3fda9bc0d943 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2889585335?pq-origsite=%requestingapplication% |
PMID | 37515723 |
PQID | 2889585335 |
PQPubID | 2044332 |
PageCount | 30 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_132f1215e01f4e6da3e78b73c187d423 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10387041 proquest_miscellaneous_2844090317 proquest_journals_2889585335 pubmed_primary_37515723 crossref_citationtrail_10_1007_s40820_023_01161_y crossref_primary_10_1007_s40820_023_01161_y springer_journals_10_1007_s40820_023_01161_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Germany – name: Heidelberg |
PublicationTitle | Nano-micro letters |
PublicationTitleAbbrev | Nano-Micro Lett |
PublicationTitleAlternate | Nanomicro Lett |
PublicationYear | 2023 |
Publisher | Springer Nature Singapore Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V – name: SpringerOpen |
References | Dou, Lai, Kley, Yang, Bischak (CR90) 2017; 114 Wang, Zou, Xu, Wang, Wang (CR7) 2021; 8 Gao, Zeng, Guo, Ge, Du (CR86) 2016; 16 Akkerman, Raino, Kovalenko, Manna (CR70) 2018; 17 Gholipour, Adamo, Cortecchia, Krishnamoorthy, Birowosuto (CR127) 2017; 29 Kim, Kim, Namgung, Cho, Son (CR51) 2022; 9 Li, Chen, Liu, Su, Qi (CR57) 2022; 47 He, Gao, Xie, Li, Zhang (CR97) 2016; 11 Jana, Song, Liu, Khanal, Janke (CR115) 2020; 11 Wang, Gao, Hao, Qin (CR106) 2020; 116 Li, Coppens, Besteiro, Wang, Govorov (CR126) 2015; 6 Casalino, Coppola, De La Rue, Logan (CR2) 2016; 10 Zhao, Dong, Feng, Zhao, Guo (CR109) 2021; 10 Li, Wang, Ma, Shen, Li (CR142) 2019; 10 Xue, Zhu, Xu, Gu, Wang (CR11) 2018; 18 Gao, Zhao, Shang, Zhong, Liu (CR96) 2018; 30 Wang, Xue, Cui, Huang, Xu (CR110) 2020; 59 Zhang, Liu, Li, Ji, Yao (CR111) 2021; 7 Zhou, Bekenstein, Eisler, Zhang, Schwartzberg (CR75) 2019; 5 Kim, Zhai, Gaulding, Habisreutinger, Moot (CR76) 2020; 14 Chen, Gao, Gao, Ge, Du (CR21) 2019; 10 Xu, Han, Zou, Li, Gu (CR65) 2021; 34 Zhao, Zhao, Guo, Zhao, Feng (CR118) 2022; 3 Fang, Dong, Shao, Yuan, Huang (CR138) 2015; 9 Duim, Loi (CR122) 2021; 4 Fu, Yuan, Zhao, Dong, Guo (CR48) 2023; 33 Feng, Yan, Liu, Gao, Wu (CR55) 2017; 29 Zhang, Ma, Wang, Zhang, Zuo (CR16) 2021; 33 Deng, Huang, Xu, Zhang, Jin (CR43) 2017; 17 Sun, Tian, Wang, Deng, Xiong (CR144) 2020; 32 Pan, Su, Zhang, Chen, Huang (CR146) 2020; 32 Miao, Zhang (CR18) 2019; 7 Saidaminov, Haque, Almutlaq, Sarmah, Miao (CR157) 2017; 5 Pi, Zhao, Zhao, Feng, Zhang (CR101) 2020; 8 Wang, Yan, Zhang, Sun, Yang, Shen (CR74) 2016; 28 Lei, Chen, Zhang, Li, Yan (CR100) 2020; 583 Dang, Liu, Cao, Tao (CR108) 2021; 4 Wang, Fang, Ma, Wang, Jin (CR120) 2019; 13 Shen, Fang, Wang, Bai, Deng (CR148) 2016; 28 Ahmadi, Wu, Hu (CR9) 2017; 29 Li, Deng, Bao, Fang, Wei (CR137) 2017; 5 Liu, Zhang, Yang, Ye, Feng (CR44) 2018; 9 Zhu, Fu, Meng, Wu, Gong (CR33) 2015; 14 Ji, Dey, Peng, Liu, Li (CR56) 2020; 59 Tan, Wu, Hong, Yin, Zhang (CR41) 2016; 138 Lin, Armin, Burn, Meredith (CR135) 2015; 9 Lu, Tian, Cao, Ma, Gu (CR149) 2016; 26 Huang, Taniguchi, Miyasaka (CR22) 2019; 141 Zhao, Qiu, Feng, Zhao, Chen (CR47) 2021; 143 ElHamdani, Benamar, Younis (CR12) 2020; 121 Chen, Lei, Li, Yu, Cai (CR93) 2020; 577 Su, Zhao, Li, Yuan, Wang (CR150) 2015; 9 Pan, Fu, Spitha, Zhao, Roy (CR94) 2021; 16 Ahn, Lee, Tan, Yang, Kim (CR123) 2017; 4 Sheng, Chen, Wang, Wang, Hui (CR59) 2018; 28 Dong, Zou, Song, Zhu, Li (CR147) 2016; 30 Hu, Zhang, Liang, Bao, Li (CR133) 2014; 24 Han, Li, Liu, Guo, Hong (CR151) 2021; 12 Han, Ma, Hua, Tang, Wang (CR69) 2022; 144 Lai, Shin, Jibril, Mirkin (CR77) 2022; 144 Cen, Liu, Zhao, Wang, Fu (CR155) 2019; 15 Li, Liu, Wu, Peng, Zhao (CR124) 2021; 60 Long, Sabatini, Saidaminov, Lakhwani, Rasmita (CR6) 2020; 5 Saouma, Stoumpos, Wong, Kanatzidis, Jang (CR37) 2017; 8 Shen, Xu, Li, Guo, Sathasivam (CR156) 2020; 32 Hao, Zou, Huang (CR17) 2019; 2 Meng, Cadusch, Crozier (CR24) 2020; 20 Li, Han, Teng, Li, Liu (CR84) 2020; 8 Zhao, Zhao, Guo, Zhan, Feng (CR116) 2021; 31 Zhang, Ye, Liang, Niu, Wu (CR125) 2022; 14 Sun, Geng, Yong, Lu, Ai (CR72) 2021; 8 Oku (CR73) 2020; 59 Fang, Li, Ding, Li, Tian (CR154) 2016; 4 Leung, Ho, Kung, Hsiao, Alshareef (CR66) 2018; 30 Ma, Fang, Chen, Jin, Wang (CR46) 2019; 13 Kim, Kyhm, Han, Kim, Ahn (CR105) 2019; 29 Guo, Sun, Wang, Wang, Min (CR27) 2022; 34 Zhang, Weng, Li, Wu, Yao (CR112) 2021; 17 Stranks, Snaith (CR30) 2015; 10 Yi, Zhou, Yu, Fan, Behdad (CR19) 2018; 13 Zhang, Yao, Liang, Niu, Wu (CR64) 2022; 61 Liu, Yang, Wang, Adil, Zhao (CR25) 2022; 4 Cicek, McClintock, Cho, Rahnema, Razeghi (CR140) 2013; 103 Ma, Fang, Liang, Wang, Li (CR62) 2021; 17 Yang, Chen, Ding, Wang, Rao (CR113) 2019; 31 Dang, Liu, Sun, Song, Hu (CR114) 2020; 11 Xu, Huang, Wu, Wei, Meng (CR15) 2021; 15 Hartmann, Varytis, Gehring, Walter, Beutel (CR23) 2020; 20 Cao, Tian, Wang, Li (CR68) 2018; 5 Steele, Pan, Martin, Keshavarz, Debroye (CR79) 2018; 30 Fu, Wang, Liu, Dong, Liu (CR92) 2019; 15 Yang, Albrow-Owen, Cai, Hasan (CR26) 2021; 371 Lin, Xing, Quan, de Arquer, Gong (CR40) 2018; 562 Li, Liu, Li, Xu, Wu (CR81) 2019; 141 Joo, Kyoung, Esfandyarpour, Lee, Koo (CR130) 2020; 370 Fang, Li, Ding, Sun, Li (CR54) 2017; 9 Blancon, Tsai, Nie, Stoumpos, Pedesseau (CR32) 2017; 355 Tsai, Nie, Blancon, Stoumpos, Asadpour (CR31) 2016; 536 Wang, Cheng, Ge, Zhang, Miao (CR35) 2016; 10 Jansen-van Vuuren, Armin, Pandey, Burn, Meredith (CR4) 2016; 28 Huang, Xiao, Dong (CR52) 2020; 5 Shaikh, Shi, Retamal, Sheikh, Haque (CR152) 2016; 4 Huang, Zhang, Xiao, Wang, Fan (CR129) 2020; 367 Sun, Tian, Cao, Xiong, Li (CR153) 2018; 30 Wang, Fullon, Acerce, Petoukhoff, Yang (CR91) 2017; 29 Li, Hong, Zhang, Deng, Fang (CR14) 2022; 13 Du, Meng, Wang, Yan, Mitzi (CR36) 2017; 56 Abdi-Jalebi, Andaji-Garmaroudi, Cacovich, Stavrakas, Philippe (CR39) 2018; 555 Lu, Li, Zhang, Han, He (CR80) 2022; 3 Li, Xia, Liu, Zhu, Feng (CR88) 2023; 35 Zhan, Cheng, Song, Li (CR53) 2022; 32 Li, Xia, Wang, Sun, An (CR63) 2022; 32 Zhao, Qiu, Gao, Feng, Chen (CR71) 2020; 32 Zhao, Li, Du, Zhang, Wei (CR87) 2020; 12 Zhu, Jiang, Ma, Feng, Zhan (CR107) 2022; 13 Zheng, Ju, Wang, Wang, Li (CR104) 2018; 6 Higashi, Kim, Jeon, Ichikawa (CR139) 2010; 108 Adinolfi, Ouellette, Saidaminov, Walters, Abdelhady (CR45) 2016; 28 Yang, Albrow-Owen, Cui, Alexander-Webber, Gu (CR20) 2019; 365 Zhao, Li, Feng, Zhao, Guo (CR58) 2022; 9 Chen, Fu, Samad, Dang, Zhao (CR95) 2017; 17 Shi, Adinolfi, Comin, Yuan, Alarousu (CR29) 2015; 347 Zhou, Luo, Zhao, Ge, Wang (CR98) 2018; 6 Long, Adamo, Tian, Klein, Krishnamoorthy (CR78) 2022; 13 Yuan, Zhao, Feng, Gao, Zhao (CR102) 2022; 14 Long, Jiang, Sabatini, Yang, Wei (CR119) 2018; 12 Chen, Liu, Zhang, Hu, Fang (CR3) 2016; 28 Sobhani, Knight, Wang, Zheng, King (CR141) 2013; 4 Han, Fu, Zou, Gu, Liu (CR85) 2021; 33 Li, Xu, Li, Guo, Wang (CR103) 2020; 32 Wang, Chen, Chu, Liu, Zhang (CR145) 2022; 14 Ishii, Miyasaka (CR121) 2020; 6 Zeng, Chen, Zhang, Wu, Yuan (CR60) 2019; 6 Alshamrani, Grieco, Hong, Fainman (CR134) 2021; 29 Zhou, Abdelwahab, Leng, Loh, Ji (CR89) 2019; 31 Chen, Qiu, Gao, Zhao, Feng (CR13) 2020; 30 Zhan, Wang, Cheng, Li, Li (CR61) 2019; 58 Cui, Bai, Sun (CR128) 2019; 29 Perumal Veeramalai, Feng, Zhang, Pammi, Pecunia (CR28) 2021; 9 Wei, Fang, Mulligan, Chuirazzi, Fang (CR42) 2016; 10 Yuan, Liu, Afshinmanesh, Li, Xu (CR82) 2015; 10 Zhang, Wu, Riaud, Wang, Xie (CR143) 2020; 9 Yao, Yang, Meng, Sun, Dong (CR38) 2017; 29 Wang, Kim (CR5) 2017; 46 Yu, Cao, Zhao, Guo, Dong (CR117) 2022; 14 Zhuang, Wang, Ma, Wu, Chen (CR50) 2019; 13 Wang, Li, Liu, Shi, Fang (CR8) 2021; 33 Cubero, Aleixos, Moltó, Gómez-Sanchis, Blasco (CR10) 2010; 4 Feng, He, Qu, Song, Pan (CR67) 2022; 13 Kelley, Mirkin, Walt, Ismagilov, Toner (CR1) 2014; 9 Shen, Fang, Wei, Yuan, Huang (CR136) 2016; 28 Saidaminov, Adinolfi, Comin, Abdelhady, Peng (CR99) 2015; 6 Klein, Wang, Tian, Ha, Paniagua-Dominguez (CR131) 2022; 35 Eaton, Lai, Gibson, Wong, Dou (CR34) 2016; 113 Zhang, Wang, Zhang, Jiang, Gao (CR49) 2017; 7 Dai, Wang, Qiang, Wang, Ye (CR132) 2022; 13 Wang, Jiang, Li, Xiao (CR83) 2022; 10 H Fang (1161_CR54) 2017; 9 A Wang (1161_CR74) 2016; 28 Y Zhao (1161_CR109) 2021; 10 Y Dang (1161_CR114) 2020; 11 Y Zhang (1161_CR16) 2021; 33 Y Higashi (1161_CR139) 2010; 108 LH Zeng (1161_CR60) 2019; 6 N Alshamrani (1161_CR134) 2021; 29 A Sobhani (1161_CR141) 2013; 4 W Deng (1161_CR43) 2017; 17 X Huang (1161_CR52) 2020; 5 PJ Huang (1161_CR22) 2019; 141 M Casalino (1161_CR2) 2016; 10 RD Jansen-van Vuuren (1161_CR4) 2016; 28 J Meng (1161_CR24) 2020; 20 Y Dong (1161_CR147) 2016; 30 Y Zhan (1161_CR53) 2022; 32 L Wang (1161_CR110) 2020; 59 J Zhao (1161_CR116) 2021; 31 SX Li (1161_CR88) 2023; 35 L Guo (1161_CR27) 2022; 34 ME Sun (1161_CR72) 2021; 8 D Hao (1161_CR17) 2019; 2 X Lu (1161_CR80) 2022; 3 Z Han (1161_CR85) 2021; 33 Z Tan (1161_CR41) 2016; 138 X Zhang (1161_CR125) 2022; 14 JA Steele (1161_CR79) 2018; 30 M Klein (1161_CR131) 2022; 35 Y Gao (1161_CR96) 2018; 30 MK Jana (1161_CR115) 2020; 11 Y Lei (1161_CR100) 2020; 583 W Li (1161_CR126) 2015; 6 H Duim (1161_CR122) 2021; 4 B Gholipour (1161_CR127) 2017; 29 SX Li (1161_CR63) 2022; 32 Z Wang (1161_CR106) 2020; 116 R Zhuang (1161_CR50) 2019; 13 G Long (1161_CR78) 2022; 13 M Yuan (1161_CR102) 2022; 14 L Liu (1161_CR25) 2022; 4 G Chen (1161_CR13) 2020; 30 V Adinolfi (1161_CR45) 2016; 28 X Zhang (1161_CR64) 2022; 61 Z Zhao (1161_CR87) 2020; 12 H Tsai (1161_CR31) 2016; 536 SO Kelley (1161_CR1) 2014; 9 F Cao (1161_CR68) 2018; 5 C Chen (1161_CR21) 2019; 10 J Xue (1161_CR11) 2018; 18 W Xu (1161_CR15) 2021; 15 X He (1161_CR97) 2016; 11 W Hartmann (1161_CR23) 2020; 20 Y Zhao (1161_CR71) 2020; 32 S ElHamdani (1161_CR12) 2020; 121 CY Li (1161_CR57) 2022; 47 T Oku (1161_CR73) 2020; 59 M Ahmadi (1161_CR9) 2017; 29 Y Zhou (1161_CR98) 2018; 6 Y Zhao (1161_CR58) 2022; 9 L Shen (1161_CR136) 2016; 28 G Cen (1161_CR155) 2019; 15 J Wang (1161_CR83) 2022; 10 W-J Joo (1161_CR130) 2020; 370 KZ Du (1161_CR36) 2017; 56 X Zhang (1161_CR112) 2021; 17 M Dai (1161_CR132) 2022; 13 J Miao (1161_CR18) 2019; 7 X Zhang (1161_CR111) 2021; 7 H Wang (1161_CR5) 2017; 46 Y Zhao (1161_CR47) 2021; 143 SX Li (1161_CR103) 2020; 32 FO Saouma (1161_CR37) 2017; 8 J Ma (1161_CR46) 2019; 13 PA Shaikh (1161_CR152) 2016; 4 Y Fu (1161_CR48) 2023; 33 J Ahn (1161_CR123) 2017; 4 K Shen (1161_CR156) 2020; 32 H Sun (1161_CR144) 2020; 32 SF Leung (1161_CR66) 2018; 30 N Zhou (1161_CR75) 2019; 5 H Zheng (1161_CR104) 2018; 6 X Xu (1161_CR65) 2021; 34 Y Zhao (1161_CR118) 2022; 3 L Gao (1161_CR86) 2016; 16 S Han (1161_CR69) 2022; 144 J Feng (1161_CR55) 2017; 29 C-K Yang (1161_CR113) 2019; 31 K Lin (1161_CR40) 2018; 562 JC Blancon (1161_CR32) 2017; 355 F Zhou (1161_CR89) 2019; 31 H Lu (1161_CR149) 2016; 26 L Dou (1161_CR90) 2017; 114 E Cicek (1161_CR140) 2013; 103 M Abdi-Jalebi (1161_CR39) 2018; 555 D Shi (1161_CR29) 2015; 347 Y Fang (1161_CR138) 2015; 9 X Hu (1161_CR133) 2014; 24 M Lai (1161_CR77) 2022; 144 Y Zhan (1161_CR61) 2019; 58 M Li (1161_CR84) 2020; 8 SW Eaton (1161_CR34) 2016; 113 J Ma (1161_CR62) 2021; 17 L Li (1161_CR137) 2017; 5 MI Saidaminov (1161_CR99) 2015; 6 D Zhu (1161_CR107) 2022; 13 G Long (1161_CR119) 2018; 12 H Chen (1161_CR3) 2016; 28 SD Stranks (1161_CR30) 2015; 10 J Chen (1161_CR95) 2017; 17 MN Zhang (1161_CR143) 2020; 9 Z Yang (1161_CR20) 2019; 365 S Cubero (1161_CR10) 2010; 4 N Wang (1161_CR35) 2016; 10 X Feng (1161_CR67) 2022; 13 Y Liu (1161_CR44) 2018; 9 X Sheng (1161_CR59) 2018; 28 H Zhu (1161_CR33) 2015; 14 QA Akkerman (1161_CR70) 2018; 17 C Ji (1161_CR56) 2020; 59 Q Fu (1161_CR92) 2019; 15 NY Kim (1161_CR105) 2019; 29 J Zhang (1161_CR49) 2017; 7 Q Pan (1161_CR146) 2020; 32 H Yuan (1161_CR82) 2015; 10 J Li (1161_CR142) 2019; 10 H Wei (1161_CR42) 2016; 10 Y Pi (1161_CR101) 2020; 8 Z Yang (1161_CR26) 2021; 371 Y Wang (1161_CR91) 2017; 29 GK Long (1161_CR6) 2020; 5 J Wang (1161_CR120) 2019; 13 EP Yao (1161_CR38) 2017; 29 T Cui (1161_CR128) 2019; 29 Q Lin (1161_CR135) 2015; 9 C Perumal Veeramalai (1161_CR28) 2021; 9 F Wang (1161_CR7) 2021; 8 A Ishii (1161_CR121) 2020; 6 Y Dang (1161_CR108) 2021; 4 Z Li (1161_CR14) 2022; 13 S Yi (1161_CR19) 2018; 13 D Pan (1161_CR94) 2021; 16 YH Kim (1161_CR76) 2020; 14 C Huang (1161_CR129) 2020; 367 L Shen (1161_CR148) 2016; 28 L Su (1161_CR150) 2015; 9 H Fang (1161_CR154) 2016; 4 D Li (1161_CR124) 2021; 60 Z Yu (1161_CR117) 2022; 14 Y Chen (1161_CR93) 2020; 577 S Han (1161_CR151) 2021; 12 H Sun (1161_CR153) 2018; 30 H Kim (1161_CR51) 2022; 9 HP Wang (1161_CR8) 2021; 33 XL Wang (1161_CR145) 2022; 14 MI Saidaminov (1161_CR157) 2017; 5 L Li (1161_CR81) 2019; 141 |
References_xml | – volume: 31 start-page: 1808088 issue: 16 year: 2019 ident: CR113 article-title: The first 2D homochiral lead iodide perovskite ferroelectrics: [R- and S-1-(4-chlorophenylethylammonium] PbI publication-title: Adv. Mater. doi: 10.1002/adma.201808088 – volume: 555 start-page: 497 issue: 7697 year: 2018 end-page: 501 ident: CR39 article-title: Maximizing and stabilizing luminescence from halide perovskites with potassium passivation publication-title: Nature doi: 10.1038/nature25989 – volume: 9 start-page: 10921 issue: 12 year: 2017 end-page: 10928 ident: CR54 article-title: An origami perovskite photodetector with spatial recognition ability publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b02213 – volume: 347 start-page: 519 issue: 6221 year: 2015 end-page: 522 ident: CR29 article-title: Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals publication-title: Science doi: 10.1126/science.aaa27 – volume: 15 start-page: 1902890 issue: 39 year: 2019 ident: CR92 article-title: Ultrathin ruddlesden–popper perovskite heterojunction for sensitive photodetection publication-title: Small doi: 10.1002/smll.201902890 – volume: 32 start-page: 1907280 issue: 16 year: 2020 ident: CR146 article-title: Omnidirectional photodetectors based on spatial resonance asymmetric facade via a 3D self-standing strategy publication-title: Adv. Mater. doi: 10.1002/adma.201907280 – volume: 370 start-page: 459 year: 2020 end-page: 463 ident: CR130 article-title: Metasurface-driven oled displays beyond 10,000 pixels per inch publication-title: Science doi: 10.1126/science.abc853 – volume: 13 start-page: 4560 issue: 1 year: 2022 ident: CR132 article-title: On-chip mid-infrared photothermoelectric detectors for full-stokes detection publication-title: Nat. Commun. doi: 10.1038/s41467-022-32309-w – volume: 8 start-page: 742 issue: 1 year: 2017 ident: CR37 article-title: Selective enhancement of optical nonlinearity in two-dimensional organic-inorganic lead iodide perovskites publication-title: Nat. Commun. doi: 10.1038/s41467-017-00788-x – volume: 4 start-page: 487 issue: 4 year: 2010 end-page: 504 ident: CR10 article-title: Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables publication-title: Food Bioprocess. Technol. doi: 10.1007/s11947-010-0411-8 – volume: 33 start-page: 2214094 year: 2023 ident: CR48 article-title: Gradient bandgap-tunable perovskite microwire arrays toward flexible color-cognitive devices publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202214094 – volume: 29 start-page: 15279 issue: 10 year: 2021 end-page: 15287 ident: CR134 article-title: Miniaturized integrated spectrometer using a silicon ring-grating design publication-title: Opt. Express doi: 10.1364/OE.424443 – volume: 30 start-page: 1801805 issue: 31 year: 2018 ident: CR96 article-title: Ultrathin CsPbX nanowire arrays with strong emission anisotropy publication-title: Adv. Mater. doi: 10.1002/adma.201801805 – volume: 577 start-page: 209 issue: 7789 year: 2020 end-page: 215 ident: CR93 article-title: Strain engineering and epitaxial stabilization of halide perovskites publication-title: Nature doi: 10.1038/s41586-019-1868-x – volume: 29 start-page: 1605242 issue: 41 year: 2017 ident: CR9 article-title: A review on organic-inorganic halide perovskite photodetectors: device engineering and fundamental physics publication-title: Adv. Mater. doi: 10.1002/adma.201605242 – volume: 14 start-page: 636 issue: 6 year: 2015 end-page: 642 ident: CR33 article-title: Lead halide perovskite nanowire lasers with low lasing thresholds and high-quality factors publication-title: Nat. Mater. doi: 10.1038/nmat4271 – volume: 24 start-page: 7373 issue: 46 year: 2014 end-page: 7380 ident: CR133 article-title: High-performance flexible broadband photodetector based on organolead halide perovskite publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201402020 – volume: 138 start-page: 16612 issue: 51 year: 2016 end-page: 16615 ident: CR41 article-title: Two-dimensional (C H NH ) PbBr perovskite crystals for high-performance photodetector publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b11683 – volume: 9 start-page: 162 year: 2020 ident: CR143 article-title: Spectrum projection with a bandgap-gradient perovskite cell for colour perception publication-title: Light Sci. Appl. doi: 10.1038/s41377-020-00400-w – volume: 30 start-page: 173 year: 2016 end-page: 179 ident: CR147 article-title: Self-powered fiber-shaped wearable omnidirectional photodetectors publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.10.009 – volume: 20 start-page: 2625 issue: 4 year: 2020 end-page: 2631 ident: CR23 article-title: Broadband spectrometer with single-photon sensitivity exploiting tailored disorder publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c00171 – volume: 12 start-page: 284 issue: 1 year: 2021 ident: CR151 article-title: Tailoring of a visible-light-absorbing biaxial ferroelectric towards broadband self-driven photodetection publication-title: Nat. Commun. doi: 10.1038/s41467-020-20530-4 – volume: 5 start-page: 1700672 issue: 22 year: 2017 ident: CR137 article-title: Self-filtered narrowband perovskite photodetectors with ultrafast and tuned spectral response publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201700672 – volume: 121 start-page: 102856 year: 2020 ident: CR12 article-title: Pedestrian support in intelligent transportation systems: challenges, solutions and open issues publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2020.102856 – volume: 59 start-page: 18933 issue: 43 year: 2020 end-page: 18937 ident: CR56 article-title: Ferroelectricity-driven self-powered ultraviolet photodetection with strong polarization sensitivity in a two-dimensional halide hybrid perovskite publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202005092 – volume: 13 start-page: 1143 issue: 12 year: 2018 end-page: 1147 ident: CR19 article-title: Subwavelength angle-sensing photodetectors inspired by directional hearing in small animals publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0278-9 – volume: 26 start-page: 1296 issue: 8 year: 2016 end-page: 1302 ident: CR149 article-title: A self-powered and stable all-perovskite photodetector-solar cell nanosystem publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201504477 – volume: 47 start-page: 565 issue: 3 year: 2022 end-page: 568 ident: CR57 article-title: Multiple-polarization-sensitive photodetector based on a perovskite metasurface publication-title: Opt. Lett. doi: 10.1364/OL.441505 – volume: 12 start-page: 44248 issue: 39 year: 2020 end-page: 44255 ident: CR87 article-title: Preparation and testing of anisotropic MAPbI perovskite photoelectric sensors publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c10062 – volume: 29 start-page: 1606859 issue: 23 year: 2017 ident: CR38 article-title: High-brightness blue and white LEDs based on inorganic perovskite nanocrystals and their composites publication-title: Adv. Mater. doi: 10.1002/adma.201606859 – volume: 4 start-page: 3835 issue: 12 year: 2021 end-page: 3851 ident: CR122 article-title: Chiral hybrid organic-inorganic metal halides: a route toward direct detection and emission of polarized light publication-title: Matter doi: 10.1016/j.matt.2021.11.011 – volume: 14 start-page: 39451 issue: 34 year: 2022 end-page: 39458 ident: CR117 article-title: Chiral lead-free double perovskite single-crystalline microwire arrays for anisotropic second-harmonic generation publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c06856 – volume: 29 start-page: 1806692 issue: 10 year: 2019 ident: CR128 article-title: Tunable metasurfaces based on active materials publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201806692 – volume: 12 start-page: 528 issue: 9 year: 2018 ident: CR119 article-title: Spin control in reduced-dimensional chiral perovskites publication-title: Nat. Photonics doi: 10.1038/s41566-018-0220-6 – volume: 10 start-page: 391 issue: 5 year: 2015 end-page: 402 ident: CR30 article-title: Metal-halide perovskites for photovoltaic and light-emitting devices publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.90 – volume: 8 start-page: 2100569 issue: 14 year: 2021 ident: CR7 article-title: Recent progress on electrical and optical manipulations of perovskite photodetectors publication-title: Adv. Sci. doi: 10.1002/advs.202100569 – volume: 30 start-page: 1908894 issue: 14 year: 2020 ident: CR13 article-title: Air-stable highly crystalline formamidinium perovskite 1D structures for ultrasensitive photodetectors publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201908894 – volume: 29 start-page: 1605993 issue: 16 year: 2017 ident: CR55 article-title: Crystallographically aligned perovskite structures for high-performance polarization-sensitive photodetectors publication-title: Adv. Mater. doi: 10.1002/adma.201605993 – volume: 113 start-page: 1993 issue: 8 year: 2016 end-page: 1998 ident: CR34 article-title: Lasing in robust cesium lead halide perovskite nanowires publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1600789113 – volume: 9 start-page: 2104598 issue: 5 year: 2022 ident: CR51 article-title: Ultrasensitive near-infrared circularly polarized light detection using 3D perovskite embedded with chiral plasmonic nanoparticles publication-title: Adv. Sci. doi: 10.1002/advs.202104598 – volume: 2 start-page: 139 issue: 1 year: 2019 end-page: 169 ident: CR17 article-title: Recent developments in flexible photodetectors based on metal halide perovskite publication-title: InfoMat doi: 10.1002/inf2.12053 – volume: 30 start-page: 1804450 issue: 46 year: 2018 ident: CR79 article-title: Photophysical pathways in highly sensitive Cs AgBiBr double-perovskite single-crystal X-ray detectors publication-title: Adv. Mater. doi: 10.1002/adma.201804450 – volume: 28 start-page: 10794 issue: 48 year: 2016 end-page: 10800 ident: CR148 article-title: A self-powered, sub-nanosecond-response solution-processed hybrid perovskite photodetector for time-resolved photoluminescence-lifetime detection publication-title: Adv. Mater. doi: 10.1002/adma.201603573 – volume: 6 start-page: 8724 year: 2015 ident: CR99 article-title: Planar-integrated single-crystalline perovskite photodetectors publication-title: Nat. Commun. doi: 10.1038/ncomms9724 – volume: 32 start-page: 1905298 issue: 9 year: 2020 ident: CR71 article-title: Layered-perovskite nanowires with long-range orientational order for ultrasensitive photodetectors publication-title: Adv. Mater. doi: 10.1002/adma.201905298 – volume: 144 start-page: 13823 issue: 30 year: 2022 end-page: 13830 ident: CR77 article-title: Combinatorial synthesis and screening of mixed halide perovskite megalibraries publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c05082 – volume: 10 start-page: 699 issue: 11 year: 2016 end-page: 704 ident: CR35 article-title: Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells publication-title: Nat. Photonics doi: 10.1038/nphoton.2016.185 – volume: 11 start-page: 1689 issue: 5 year: 2020 end-page: 1696 ident: CR114 article-title: Bulk chiral halide perovskite single crystals for active circular dichroism and circularly polarized luminescence publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b03718 – volume: 17 start-page: 2103855 issue: 47 year: 2021 ident: CR62 article-title: Full-stokes polarimeter based on chiral perovskites with chirality and large optical anisotropy publication-title: Small doi: 10.1002/smll.202103855 – volume: 11 start-page: 633 issue: 7 year: 2016 end-page: 638 ident: CR97 article-title: Wafer-scale monodomain films of spontaneously aligned single-walled carbon nanotubes publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.44 – volume: 34 start-page: 2108408 issue: 9 year: 2021 ident: CR65 article-title: Miniaturized multispectral detector derived from gradient response units on single MAPbX microwire publication-title: Adv. Mater. doi: 10.1002/adma.202108408 – volume: 141 start-page: 2623 issue: 6 year: 2019 end-page: 2629 ident: CR81 article-title: Two-dimensional hybrid perovskite-type ferroelectric for highly polarization-sensitive shortwave photodetection publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b12948 – volume: 29 start-page: 1808668 issue: 11 year: 2019 ident: CR105 article-title: Chiroptical-conjugated polymer/chiral small molecule hybrid thin films for circularly polarized light-detecting heterojunction devices publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201808668 – volume: 56 start-page: 8158 issue: 28 year: 2017 end-page: 8162 ident: CR36 article-title: Bandgap engineering of lead-free double perovskite Cs AgBiBr through trivalent metal alloying publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201703970 – volume: 8 start-page: 632 year: 2020 ident: CR101 article-title: Capillary-bridge controlled patterning of stable double-perovskite microwire arrays for non-toxic photodetectors publication-title: Front. Chem. doi: 10.3389/fchem.2020.00632 – volume: 14 start-page: 1601 issue: 1 year: 2022 end-page: 1608 ident: CR102 article-title: Ultrasensitive photodetectors based on strongly interacted layered-perovskite nanowires publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c20851 – volume: 8 start-page: 2004853 issue: 9 year: 2021 ident: CR72 article-title: Pressure-triggered blue emission of zero-dimensional organic bismuth bromide perovskite publication-title: Adv. Sci. doi: 10.1002/advs.202004853 – volume: 355 start-page: 1288 issue: 6331 year: 2017 end-page: 1291 ident: CR32 article-title: Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites publication-title: Science doi: 10.1126/science.aal4211 – volume: 13 start-page: 1215 issue: 5 year: 2022 end-page: 1225 ident: CR14 article-title: Perovskite-type 2D materials for high-performance photodetectors publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.1c04225 – volume: 11 start-page: 4699 issue: 1 year: 2020 ident: CR115 article-title: Organic-to-inorganic structural chirality transfer in a 2D hybrid perovskite and impact on rashba-dresselhaus spin-orbit coupling publication-title: Nat. Commun. doi: 10.1038/s41467-020-18485-7 – volume: 60 start-page: 8415 issue: 15 year: 2021 end-page: 8418 ident: CR124 article-title: Chiral lead-free hybrid perovskites for self-powered circularly polarized light detection publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202013947 – volume: 18 start-page: 7628 issue: 12 year: 2018 end-page: 7634 ident: CR11 article-title: Narrowband perovskite photodetector-based image array for potential application in artificial vision publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b03209 – volume: 13 start-page: 6106 issue: 1 year: 2022 ident: CR67 article-title: Spray-coated perovskite hemispherical photodetector featuring narrow-band and wide-angle imaging publication-title: Nat. Commun. doi: 10.1038/s41467-022-33934-1 – volume: 5 start-page: 2000513 issue: 10 year: 2020 ident: CR52 article-title: Metal halide perovskites functionalized by patterning technologies publication-title: Adv. Mater. Technol. doi: 10.1002/admt.202000513 – volume: 14 start-page: 8816 issue: 7 year: 2020 end-page: 8825 ident: CR76 article-title: Strategies to achieve high circularly polarized luminescence from colloidal organic-inorganic hybrid perovskite nanocrystals publication-title: ACS Nano doi: 10.1021/acsnano.0c03418 – volume: 9 start-page: 679 issue: 10 year: 2015 end-page: 686 ident: CR138 article-title: Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination publication-title: Nat. Photonics doi: 10.1038/nphoton.2015.156 – volume: 4 start-page: 851 issue: 5 year: 2017 end-page: 856 ident: CR123 article-title: A new class of chiral semiconductors: chiral-organic-molecule-incorporating organic-inorganic hybrid perovskites publication-title: Mater. Horiz. doi: 10.1039/c7mh00197e – volume: 17 start-page: 2482 issue: 4 year: 2017 end-page: 2489 ident: CR43 article-title: Ultrahigh-responsivity photodetectors from perovskite nanowire arrays for sequentially tunable spectral measurement publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b00166 – volume: 33 start-page: 2003309 issue: 7 year: 2021 ident: CR8 article-title: Low-dimensional metal halide perovskite photodetectors publication-title: Adv. Mater. doi: 10.1002/adma.202003309 – volume: 61 start-page: 202205939 issue: 32 year: 2022 ident: CR64 article-title: Self-assembly of 2D hybrid double perovskites on 3D Cs AgBiBr crystals towards ultrasensitive detection of weak polarized light publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202205939 – volume: 32 start-page: 2206999 issue: 45 year: 2022 ident: CR63 article-title: Self-powered and flexible photodetector with high polarization sensitivity based on MAPbBr –MAPbI microwire lateral heterojunction publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202206999 – volume: 583 start-page: 790 issue: 7818 year: 2020 end-page: 795 ident: CR100 article-title: A fabrication process for flexible single-crystal perovskite devices publication-title: Nature doi: 10.1038/s41586-020-2526-z – volume: 13 start-page: 1551 issue: 1 year: 2022 ident: CR78 article-title: Perovskite metasurfaces with large superstructural chirality publication-title: Nat. Commun. doi: 10.1038/s41467-022-29253-0 – volume: 29 start-page: 1603995 issue: 4 year: 2017 ident: CR91 article-title: Solution-processed MoS /organolead trihalide perovskite photodetectors publication-title: Adv. Mater. doi: 10.1002/adma.201603995 – volume: 59 start-page: 6442 issue: 16 year: 2020 end-page: 6450 ident: CR110 article-title: A chiral reduced-dimension perovskite for an efficient flexible circularly polarized light photodetector publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201915912 – volume: 10 start-page: 806 issue: 1 year: 2019 ident: CR142 article-title: Self-trapped state enabled filterless narrowband photodetections in 2D layered perovskite single crystals publication-title: Nat. Commun. doi: 10.1038/s41467-019-08768-z – volume: 32 start-page: 2200385 issue: 24 year: 2022 ident: CR53 article-title: Micro-nano structure functionalized perovskite optoelectronics: from structure functionalities to device applications publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202200385 – volume: 28 start-page: 8132 issue: 22 year: 2016 end-page: 8140 ident: CR74 article-title: Controlled synthesis of lead-free and stable perovskite derivative Cs SnI nanocrystals via a facile hot-injection process publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b01329 – volume: 58 start-page: 16456 issue: 46 year: 2019 end-page: 16462 ident: CR61 article-title: A butterfly-inspired hierarchical light-trapping structure towards a high-performance polarization-sensitive perovskite photodetector publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201908743 – volume: 35 start-page: 2207771 issue: 3 year: 2023 ident: CR88 article-title: In situ encapsulated moire perovskite for stable photodetectors with ultrahigh polarization sensitivity publication-title: Adv. Mater. doi: 10.1002/adma.202207771 – volume: 32 start-page: 2001998 issue: 28 year: 2020 ident: CR103 article-title: Perovskite single-crystal microwire-array photodetectors with performance stability beyond 1 year publication-title: Adv. Mater. doi: 10.1002/adma.202001998 – volume: 28 start-page: 403 issue: 3 year: 2016 end-page: 433 ident: CR3 article-title: Nanostructured photodetectors: from ultraviolet to terahertz publication-title: Adv. Mater. doi: 10.1002/adma.201503534 – volume: 5 start-page: 423 issue: 6 year: 2020 end-page: 439 ident: CR6 article-title: Chiral-perovskite optoelectronics publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-020-0181-5 – volume: 371 start-page: 480 issue: 6528 year: 2021 ident: CR26 article-title: Miniaturization of optical spectrometers publication-title: Science doi: 10.1126/science.abe0722 – volume: 6 start-page: 1901134 issue: 19 year: 2019 ident: CR60 article-title: Multilayered PdSe /perovskite schottky junction for fast, self-powered, polarization-sensitive, broadband photodetectors, and image sensor application publication-title: Adv. Sci. doi: 10.1002/advs.201901134 – volume: 34 start-page: 2200221 issue: 33 year: 2022 ident: CR27 article-title: A single-dot perovskite spectrometer publication-title: Adv. Mater. doi: 10.1002/adma.202200221 – volume: 562 start-page: 245 issue: 7726 year: 2018 end-page: 248 ident: CR40 article-title: Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent publication-title: Nature doi: 10.1038/s41586-018-0575-3 – volume: 31 start-page: 2105855 issue: 48 year: 2021 ident: CR116 article-title: Layered metal-halide perovskite single-crystalline microwire arrays for anisotropic nonlinear optics publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202105855 – volume: 32 start-page: 1908108 issue: 14 year: 2020 ident: CR144 article-title: In situ formed gradient bandgap-tunable perovskite for ultrahigh-speed color/spectrum-sensitive photodetectors via electron-donor control publication-title: Adv. Mater. doi: 10.1002/adma.201908108 – volume: 143 start-page: 8437 issue: 22 year: 2021 end-page: 8445 ident: CR47 article-title: Chiral 2D-perovskite nanowires for stokes photodetectors publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c02675 – volume: 5 start-page: 3731 issue: 9 year: 2018 end-page: 3738 ident: CR68 article-title: Polarized ferroelectric field-enhanced self-powered perovskite photodetector publication-title: ACS Photonics doi: 10.1021/acsphotonics.8b00770 – volume: 17 start-page: 2102884 issue: 40 year: 2021 ident: CR112 article-title: Heterogeneous integration of chiral lead-chloride perovskite crystals with Si wafer for boosted circularly polarized light detection in solar-blind ultraviolet region publication-title: Small doi: 10.1002/smll.202102884 – volume: 9 start-page: 969 issue: 12 year: 2014 end-page: 980 ident: CR1 article-title: Advancing the speed, sensitivity and accuracy of biomolecular detection using multi-length-scale engineering publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.261 – volume: 20 start-page: 320 issue: 1 year: 2020 end-page: 328 ident: CR24 article-title: Detector-only spectrometer based on structurally colored silicon nanowires and a reconstruction algorithm publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b03862 – volume: 8 start-page: 2000149 issue: 9 year: 2020 ident: CR84 article-title: Minute-scale rapid crystallization of a highly dichroic 2D hybrid perovskite crystal toward efficient polarization-sensitive photodetector publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202000149 – volume: 17 start-page: 394 issue: 5 year: 2018 end-page: 405 ident: CR70 article-title: Genesis, Challenges and opportunities for colloidal lead halide perovskite nanocrystals publication-title: Nat. Mater. doi: 10.1038/s41563-018-0018-4 – volume: 7 start-page: 36722 issue: 58 year: 2017 end-page: 36727 ident: CR49 article-title: High-performance transparent ultraviolet photodetectors based on inorganic perovskite CsPbCl nanocrystals publication-title: RSC Adv. doi: 10.1039/c7ra06597c – volume: 144 start-page: 20315 issue: 44 year: 2022 end-page: 20322 ident: CR69 article-title: Soft multiaxial molecular ferroelectric thin films with self-powered broadband photodetection publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c07892 – volume: 4 start-page: 794 issue: 3 year: 2021 end-page: 820 ident: CR108 article-title: Chiral halide perovskite crystals for optoelectronic applications publication-title: Matter doi: 10.1016/j.matt.2020.12.018 – volume: 4 start-page: 630 issue: 3 year: 2016 end-page: 636 ident: CR154 article-title: A self-powered organolead halide perovskite single crystal photodetector driven by a dvd-based triboelectric nanogenerator publication-title: J. Mater. Chem. C doi: 10.1039/c5tc03342j – volume: 6 start-page: 1800679 issue: 22 year: 2018 ident: CR98 article-title: Flexible linearly polarized photodetectors based on all-inorganic perovskite CsPbI nanowires publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201800679 – volume: 9 start-page: 687 issue: 10 year: 2015 end-page: 694 ident: CR135 article-title: Filterless narrowband visible photodetectors publication-title: Nat. Photonics doi: 10.1038/nphoton.2015.175 – volume: 30 start-page: 1706986 issue: 21 year: 2018 ident: CR153 article-title: Ultrahigh-performance self-powered flexible double-twisted fibrous broadband perovskite photodetector publication-title: Adv. Mater. doi: 10.1002/adma.201706986 – volume: 13 start-page: 3454 issue: 1 year: 2022 ident: CR107 article-title: Organic donor-acceptor heterojunctions for high performance circularly polarized light detection publication-title: Nat. Commun. doi: 10.1038/s41467-022-31186-7 – volume: 10 start-page: 2102227 issue: 3 year: 2021 ident: CR109 article-title: Lead-free chiral 2D double perovskite microwire arrays for circularly polarized light detection publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202102227 – volume: 46 start-page: 5204 issue: 17 year: 2017 end-page: 5236 ident: CR5 article-title: Perovskite-based photodetectors: materials and devices publication-title: Chem. Soc. Rev. doi: 10.1039/c6cs00896h – volume: 16 start-page: 159 issue: 2 year: 2021 end-page: 165 ident: CR94 article-title: Deterministic fabrication of arbitrary vertical heterostructures of two-dimensional ruddlesden-popper halide perovskites publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-00802-2 – volume: 10 start-page: 895 issue: 6 year: 2016 end-page: 921 ident: CR2 article-title: State-of-the-art all-silicon sub-bandgap photodetectors at telecom and datacom wavelengths publication-title: Laser Photonics Rev. doi: 10.1002/lpor.201600065 – volume: 28 start-page: 4766 issue: 24 year: 2016 end-page: 4802 ident: CR4 article-title: Organic photodiodes: the future of full-color detection and image sensing publication-title: Adv. Mater. doi: 10.1002/adma.201505405 – volume: 4 start-page: 1643 year: 2013 ident: CR141 article-title: Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device publication-title: Nat. Commun. doi: 10.1038/ncomms2642 – volume: 141 start-page: 14520 issue: 37 year: 2019 end-page: 14523 ident: CR22 article-title: Bulk photovoltaic effect in a pair of chiral-polar layered perovskite-type lead iodides altered by chirality of organic cations publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b06815 – volume: 35 start-page: 2207317 issue: 1 year: 2022 ident: CR131 article-title: Polarization-tunable perovskite light-emitting metatransistor publication-title: Adv. Mater. doi: 10.1002/adma.202207317 – volume: 32 start-page: 2000004 issue: 22 year: 2020 ident: CR156 article-title: Flexible and self-powered photodetector arrays based on all-inorganic CsPbBr(3) quantum dots publication-title: Adv. Mater. doi: 10.1002/adma.202000004 – volume: 10 start-page: 707 issue: 8 year: 2015 end-page: 713 ident: CR82 article-title: Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.112 – volume: 17 start-page: 460 issue: 1 year: 2017 end-page: 466 ident: CR95 article-title: Vapor-phase epitaxial growth of aligned nanowire networks of cesium lead halide perovskites (CsPbX , X = Cl, Br, I) publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04450 – volume: 10 start-page: 333 issue: 5 year: 2016 end-page: 339 ident: CR42 article-title: Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals publication-title: Nat. Photonics doi: 10.1038/nphoton.2016.41 – volume: 28 start-page: 7264 issue: 33 year: 2016 end-page: 7268 ident: CR45 article-title: Fast and sensitive solution-processed visible-blind perovskite uv photodetectors publication-title: Adv. Mater. doi: 10.1002/adma.201601196 – volume: 13 start-page: 9473 issue: 8 year: 2019 end-page: 9481 ident: CR120 article-title: Aqueous synthesis of low-dimensional lead halide perovskites for room-temperature circularly polarized light emission and detection publication-title: ACS Nano doi: 10.1021/acsnano.9b04437 – volume: 9 start-page: 100086 year: 2022 ident: CR58 article-title: Chiral 1D perovskite microwire arrays for circularly polarized light detection publication-title: Giant doi: 10.1016/j.giant.2021.100086 – volume: 29 start-page: 1604268 issue: 9 year: 2017 ident: CR127 article-title: Organometallic perovskite metasurfaces publication-title: Adv. Mater. doi: 10.1002/adma.201604268 – volume: 10 start-page: 1927 issue: 1 year: 2019 ident: CR21 article-title: Circularly polarized light detection using chiral hybrid perovskite publication-title: Nat. Commun. doi: 10.1038/s41467-019-09942-z – volume: 6 start-page: 1801246 issue: 23 year: 2018 ident: CR104 article-title: Circularly polarized luminescent carbon dot nanomaterials of helical superstructures for circularly polarized light detection publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201801246 – volume: 31 start-page: 1904155 issue: 48 year: 2019 ident: CR89 article-title: 2D perovskites with giant excitonic optical nonlinearities for high-performance sub-bandgap photodetection publication-title: Adv. Mater. doi: 10.1002/adma.201904155 – volume: 108 start-page: 034502 issue: 3 year: 2010 ident: CR139 article-title: Enhancing spectral contrast in organic red-light photodetectors based on a light-absorbing and exciton-blocking layered system publication-title: J. Appl. Phys. doi: 10.1063/1.3466766 – volume: 15 start-page: 1902135 issue: 36 year: 2019 ident: CR155 article-title: Atomic-layer deposition-assisted double-side interfacial engineering for high-performance flexible and stable CsPbBr(3) perovskite photodetectors toward visible light communication applications publication-title: Small doi: 10.1002/smll.201902135 – volume: 114 start-page: 7216 issue: 28 year: 2017 end-page: 7221 ident: CR90 article-title: Spatially resolved multicolor CsPbX nanowire heterojunctions via anion exchange publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1703860114 – volume: 15 start-page: 2100183 issue: 10 year: 2021 ident: CR15 article-title: 2D perovskite single crystals for photodetectors: from macro-to microscale publication-title: Phys. Status Solidi RRL doi: 10.1002/pssr.202100183 – volume: 365 start-page: 1017 year: 2019 end-page: 1020 ident: CR20 article-title: Single-nanowire spectrometers publication-title: Science doi: 10.1126/science.aax8814 – volume: 30 start-page: 1704611 issue: 8 year: 2018 ident: CR66 article-title: A self-powered and flexible organometallic halide perovskite photodetector with very high detectivity publication-title: Adv. Mater. doi: 10.1002/adma.201704611 – volume: 4 start-page: 401 issue: 2 year: 2022 end-page: 409 ident: CR25 article-title: Building supramolecular chirality in bulk heterojunctions enables amplified dissymmetry current for high-performing circularly polarized light detection publication-title: ACS Mater. Lett. doi: 10.1021/acsmaterialslett.1c00726 – volume: 3 start-page: 2100335 issue: 5 year: 2022 ident: CR80 article-title: Recent progress on perovskite photodetectors for narrowband detection publication-title: Adv. Photonics Res. doi: 10.1002/adpr.202100335 – volume: 103 start-page: 191108 issue: 19 year: 2013 ident: CR140 article-title: Al Ga N-based back-illuminated solar-blind photodetectors with external quantum efficiency of 89% publication-title: Appl. Phys. Lett. doi: 10.1063/1.4829065 – volume: 116 start-page: 053301 issue: 5 year: 2020 ident: CR106 article-title: Helical-chiroptical nanowires generated orbital angular momentum for the detection of circularly polarized light publication-title: Appl. Phys. Lett. doi: 10.1063/1.5141102 – volume: 9 start-page: 5302 issue: 1 year: 2018 ident: CR44 article-title: Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors publication-title: Nat. Commun. doi: 10.1038/s41467-018-07440-2 – volume: 6 start-page: eabd3274 issue: 46 year: 2020 ident: CR121 article-title: Direct detection of circular polarized light in helical 1D perovskite-based photodiode publication-title: Sci. Adv. doi: 10.1126/sciadv.abd3274 – volume: 4 start-page: 8304 issue: 35 year: 2016 end-page: 8312 ident: CR152 article-title: Schottky junctions on perovskite single crystals: light-modulated dielectric constant and self-biased photodetection publication-title: J. Mater. Chem. C doi: 10.1039/c6tc02828d – volume: 28 start-page: 1800283 issue: 19 year: 2018 ident: CR59 article-title: Polarized optoelectronics of CsPbX (x = Cl, Br, I) perovskite nanoplates with tunable size and thickness publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201800283 – volume: 536 start-page: 312 issue: 7616 year: 2016 end-page: 316 ident: CR31 article-title: High-efficiency two-dimensional ruddlesden-popper perovskite solar cells publication-title: Nature doi: 10.1038/nature18306 – volume: 28 start-page: 2043 issue: 10 year: 2016 end-page: 2048 ident: CR136 article-title: A highly sensitive narrowband nanocomposite photodetector with gain publication-title: Adv. Mater. doi: 10.1002/adma.201503774 – volume: 5 start-page: eaav8141 year: 2019 ident: CR75 article-title: Perovskite nanowire–block copolymer composites with digitally programmable polarization anisotropy publication-title: Sci. Adv. doi: 10.1126/sciadv.aav8141 – volume: 16 start-page: 7446 issue: 12 year: 2016 end-page: 7454 ident: CR86 article-title: Passivated single-crystalline CH NH PbI nanowire photodetector with high detectivity and polarization sensitivity publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03119 – volume: 3 start-page: 657 issue: 4 year: 2022 end-page: 667 ident: CR118 article-title: Reversible phase transition for switchable second harmonic generation in 2D perovskite microwires publication-title: SmartMat doi: 10.1002/smm2.1120 – volume: 9 start-page: 968 issue: 6 year: 2021 ident: CR28 article-title: Lead–halide perovskites for next-generation self-powered photodetectors: a comprehensive review publication-title: Photonics Res. doi: 10.1364/prj.418450 – volume: 33 start-page: 2006691 issue: 26 year: 2021 ident: CR16 article-title: Lead-free perovskite photodetectors: progress, challenges, and opportunities publication-title: Adv. Mater. doi: 10.1002/adma.202006691 – volume: 7 start-page: 1741 issue: 7 year: 2019 end-page: 1791 ident: CR18 article-title: Recent progress on highly sensitive perovskite photodetectors publication-title: J. Mater. Chem. C doi: 10.1039/c8tc06089d – volume: 14 start-page: 14455 issue: 12 year: 2022 end-page: 14465 ident: CR145 article-title: Spectrum reconstruction with filter-free photodetectors based on graded-band-gap perovskite quantum dot heterojunctions publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c24962 – volume: 13 start-page: 602 issue: 9 year: 2019 end-page: 608 ident: CR50 article-title: Highly sensitive X-ray detector made of layered perovskite-like (NH ) Bi I single crystal with anisotropic response publication-title: Nat. Photonics doi: 10.1038/s41566-019-0466-7 – volume: 14 start-page: 36781 issue: 32 year: 2022 end-page: 36788 ident: CR125 article-title: Direct detection of near-infrared circularly polarized light via precisely designed chiral perovskite heterostructures publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c07208 – volume: 7 start-page: 1261 issue: 7 year: 2021 end-page: 1268 ident: CR111 article-title: Great amplification of circular polarization sensitivity via heterostructure engineering of a chiral two-dimensional hybrid perovskite crystal with a three-dimensional MAPbI crystal publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.1c00649 – volume: 33 start-page: 2003852 issue: 11 year: 2021 ident: CR85 article-title: Oriented perovskite growth regulation enables sensitive broadband detection and imaging of polarized photons covering 300–1050 nm publication-title: Adv. Mater. doi: 10.1002/adma.202003852 – volume: 367 start-page: 1018 year: 2020 end-page: 1021 ident: CR129 article-title: Ultrafast control of vortex microlasers publication-title: Science doi: 10.1126/science.aba459 – volume: 5 start-page: 1600704 issue: 2 year: 2017 ident: CR157 article-title: Inorganic lead halide perovskite single crystals: phase-selective low-temperature growth, carrier transport properties, and self-powered photodetection publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201600704 – volume: 10 start-page: 2102436 issue: 6 year: 2022 ident: CR83 article-title: Anisotropic low-dimensional materials for polarization-sensitive photodetectors: From materials to devices publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202102436 – volume: 59 start-page: 264 issue: 1 year: 2020 end-page: 305 ident: CR73 article-title: Crystal structures of perovskite halide compounds used for solar cells publication-title: Rev. Adv. Mater. Sci. doi: 10.1515/rams-2020-0015 – volume: 6 start-page: 8379 issue: 1 year: 2015 ident: CR126 article-title: Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials publication-title: Nat. Commun. doi: 10.1038/ncomms9379 – volume: 13 start-page: 3659 issue: 3 year: 2019 end-page: 3665 ident: CR46 article-title: Chiral 2D perovskites with a high degree of circularly polarized photoluminescence publication-title: ACS Nano doi: 10.1021/acsnano.9b00302 – volume: 9 start-page: 11310 issue: 11 year: 2015 end-page: 11316 ident: CR150 article-title: High-performance organolead halide perovskite-based self-powered triboelectric photodetector publication-title: ACS Nano doi: 10.1021/acsnano.5b04995 – volume: 47 start-page: 565 issue: 3 year: 2022 ident: 1161_CR57 publication-title: Opt. Lett. doi: 10.1364/OL.441505 – volume: 29 start-page: 1604268 issue: 9 year: 2017 ident: 1161_CR127 publication-title: Adv. Mater. doi: 10.1002/adma.201604268 – volume: 32 start-page: 2200385 issue: 24 year: 2022 ident: 1161_CR53 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202200385 – volume: 11 start-page: 1689 issue: 5 year: 2020 ident: 1161_CR114 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b03718 – volume: 59 start-page: 264 issue: 1 year: 2020 ident: 1161_CR73 publication-title: Rev. Adv. Mater. Sci. doi: 10.1515/rams-2020-0015 – volume: 14 start-page: 1601 issue: 1 year: 2022 ident: 1161_CR102 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c20851 – volume: 6 start-page: 1901134 issue: 19 year: 2019 ident: 1161_CR60 publication-title: Adv. Sci. doi: 10.1002/advs.201901134 – volume: 10 start-page: 2102227 issue: 3 year: 2021 ident: 1161_CR109 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202102227 – volume: 34 start-page: 2200221 issue: 33 year: 2022 ident: 1161_CR27 publication-title: Adv. Mater. doi: 10.1002/adma.202200221 – volume: 30 start-page: 1908894 issue: 14 year: 2020 ident: 1161_CR13 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201908894 – volume: 14 start-page: 8816 issue: 7 year: 2020 ident: 1161_CR76 publication-title: ACS Nano doi: 10.1021/acsnano.0c03418 – volume: 12 start-page: 44248 issue: 39 year: 2020 ident: 1161_CR87 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c10062 – volume: 15 start-page: 1902135 issue: 36 year: 2019 ident: 1161_CR155 publication-title: Small doi: 10.1002/smll.201902135 – volume: 32 start-page: 2206999 issue: 45 year: 2022 ident: 1161_CR63 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202206999 – volume: 46 start-page: 5204 issue: 17 year: 2017 ident: 1161_CR5 publication-title: Chem. Soc. Rev. doi: 10.1039/c6cs00896h – volume: 13 start-page: 1143 issue: 12 year: 2018 ident: 1161_CR19 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0278-9 – volume: 103 start-page: 191108 issue: 19 year: 2013 ident: 1161_CR140 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4829065 – volume: 9 start-page: 969 issue: 12 year: 2014 ident: 1161_CR1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.261 – volume: 29 start-page: 15279 issue: 10 year: 2021 ident: 1161_CR134 publication-title: Opt. Express doi: 10.1364/OE.424443 – volume: 31 start-page: 1904155 issue: 48 year: 2019 ident: 1161_CR89 publication-title: Adv. Mater. doi: 10.1002/adma.201904155 – volume: 28 start-page: 10794 issue: 48 year: 2016 ident: 1161_CR148 publication-title: Adv. Mater. doi: 10.1002/adma.201603573 – volume: 9 start-page: 5302 issue: 1 year: 2018 ident: 1161_CR44 publication-title: Nat. Commun. doi: 10.1038/s41467-018-07440-2 – volume: 11 start-page: 4699 issue: 1 year: 2020 ident: 1161_CR115 publication-title: Nat. Commun. doi: 10.1038/s41467-020-18485-7 – volume: 29 start-page: 1605993 issue: 16 year: 2017 ident: 1161_CR55 publication-title: Adv. Mater. doi: 10.1002/adma.201605993 – volume: 4 start-page: 851 issue: 5 year: 2017 ident: 1161_CR123 publication-title: Mater. Horiz. doi: 10.1039/c7mh00197e – volume: 20 start-page: 2625 issue: 4 year: 2020 ident: 1161_CR23 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c00171 – volume: 15 start-page: 1902890 issue: 39 year: 2019 ident: 1161_CR92 publication-title: Small doi: 10.1002/smll.201902890 – volume: 6 start-page: 8724 year: 2015 ident: 1161_CR99 publication-title: Nat. Commun. doi: 10.1038/ncomms9724 – volume: 29 start-page: 1808668 issue: 11 year: 2019 ident: 1161_CR105 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201808668 – volume: 4 start-page: 8304 issue: 35 year: 2016 ident: 1161_CR152 publication-title: J. Mater. Chem. C doi: 10.1039/c6tc02828d – volume: 18 start-page: 7628 issue: 12 year: 2018 ident: 1161_CR11 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b03209 – volume: 32 start-page: 2000004 issue: 22 year: 2020 ident: 1161_CR156 publication-title: Adv. Mater. doi: 10.1002/adma.202000004 – volume: 9 start-page: 10921 issue: 12 year: 2017 ident: 1161_CR54 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b02213 – volume: 9 start-page: 162 year: 2020 ident: 1161_CR143 publication-title: Light Sci. Appl. doi: 10.1038/s41377-020-00400-w – volume: 17 start-page: 2482 issue: 4 year: 2017 ident: 1161_CR43 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b00166 – volume: 33 start-page: 2003309 issue: 7 year: 2021 ident: 1161_CR8 publication-title: Adv. Mater. doi: 10.1002/adma.202003309 – volume: 141 start-page: 14520 issue: 37 year: 2019 ident: 1161_CR22 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b06815 – volume: 13 start-page: 9473 issue: 8 year: 2019 ident: 1161_CR120 publication-title: ACS Nano doi: 10.1021/acsnano.9b04437 – volume: 31 start-page: 1808088 issue: 16 year: 2019 ident: 1161_CR113 publication-title: Adv. Mater. doi: 10.1002/adma.201808088 – volume: 8 start-page: 2100569 issue: 14 year: 2021 ident: 1161_CR7 publication-title: Adv. Sci. doi: 10.1002/advs.202100569 – volume: 562 start-page: 245 issue: 7726 year: 2018 ident: 1161_CR40 publication-title: Nature doi: 10.1038/s41586-018-0575-3 – volume: 33 start-page: 2214094 year: 2023 ident: 1161_CR48 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202214094 – volume: 7 start-page: 36722 issue: 58 year: 2017 ident: 1161_CR49 publication-title: RSC Adv. doi: 10.1039/c7ra06597c – volume: 4 start-page: 1643 year: 2013 ident: 1161_CR141 publication-title: Nat. Commun. doi: 10.1038/ncomms2642 – volume: 58 start-page: 16456 issue: 46 year: 2019 ident: 1161_CR61 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201908743 – volume: 30 start-page: 1801805 issue: 31 year: 2018 ident: 1161_CR96 publication-title: Adv. Mater. doi: 10.1002/adma.201801805 – volume: 10 start-page: 806 issue: 1 year: 2019 ident: 1161_CR142 publication-title: Nat. Commun. doi: 10.1038/s41467-019-08768-z – volume: 10 start-page: 1927 issue: 1 year: 2019 ident: 1161_CR21 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09942-z – volume: 116 start-page: 053301 issue: 5 year: 2020 ident: 1161_CR106 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5141102 – volume: 9 start-page: 968 issue: 6 year: 2021 ident: 1161_CR28 publication-title: Photonics Res. doi: 10.1364/prj.418450 – volume: 143 start-page: 8437 issue: 22 year: 2021 ident: 1161_CR47 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c02675 – volume: 555 start-page: 497 issue: 7697 year: 2018 ident: 1161_CR39 publication-title: Nature doi: 10.1038/nature25989 – volume: 108 start-page: 034502 issue: 3 year: 2010 ident: 1161_CR139 publication-title: J. Appl. Phys. doi: 10.1063/1.3466766 – volume: 371 start-page: 480 issue: 6528 year: 2021 ident: 1161_CR26 publication-title: Science doi: 10.1126/science.abe0722 – volume: 13 start-page: 1215 issue: 5 year: 2022 ident: 1161_CR14 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.1c04225 – volume: 7 start-page: 1741 issue: 7 year: 2019 ident: 1161_CR18 publication-title: J. Mater. Chem. C doi: 10.1039/c8tc06089d – volume: 4 start-page: 630 issue: 3 year: 2016 ident: 1161_CR154 publication-title: J. Mater. Chem. C doi: 10.1039/c5tc03342j – volume: 7 start-page: 1261 issue: 7 year: 2021 ident: 1161_CR111 publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.1c00649 – volume: 17 start-page: 460 issue: 1 year: 2017 ident: 1161_CR95 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04450 – volume: 113 start-page: 1993 issue: 8 year: 2016 ident: 1161_CR34 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1600789113 – volume: 144 start-page: 20315 issue: 44 year: 2022 ident: 1161_CR69 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c07892 – volume: 5 start-page: eaav8141 year: 2019 ident: 1161_CR75 publication-title: Sci. Adv. doi: 10.1126/sciadv.aav8141 – volume: 536 start-page: 312 issue: 7616 year: 2016 ident: 1161_CR31 publication-title: Nature doi: 10.1038/nature18306 – volume: 29 start-page: 1606859 issue: 23 year: 2017 ident: 1161_CR38 publication-title: Adv. Mater. doi: 10.1002/adma.201606859 – volume: 61 start-page: 202205939 issue: 32 year: 2022 ident: 1161_CR64 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202205939 – volume: 35 start-page: 2207317 issue: 1 year: 2022 ident: 1161_CR131 publication-title: Adv. Mater. doi: 10.1002/adma.202207317 – volume: 583 start-page: 790 issue: 7818 year: 2020 ident: 1161_CR100 publication-title: Nature doi: 10.1038/s41586-020-2526-z – volume: 28 start-page: 403 issue: 3 year: 2016 ident: 1161_CR3 publication-title: Adv. Mater. doi: 10.1002/adma.201503534 – volume: 13 start-page: 602 issue: 9 year: 2019 ident: 1161_CR50 publication-title: Nat. Photonics doi: 10.1038/s41566-019-0466-7 – volume: 28 start-page: 7264 issue: 33 year: 2016 ident: 1161_CR45 publication-title: Adv. Mater. doi: 10.1002/adma.201601196 – volume: 367 start-page: 1018 year: 2020 ident: 1161_CR129 publication-title: Science doi: 10.1126/science.aba459 – volume: 33 start-page: 2006691 issue: 26 year: 2021 ident: 1161_CR16 publication-title: Adv. Mater. doi: 10.1002/adma.202006691 – volume: 28 start-page: 1800283 issue: 19 year: 2018 ident: 1161_CR59 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201800283 – volume: 4 start-page: 487 issue: 4 year: 2010 ident: 1161_CR10 publication-title: Food Bioprocess. Technol. doi: 10.1007/s11947-010-0411-8 – volume: 59 start-page: 18933 issue: 43 year: 2020 ident: 1161_CR56 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202005092 – volume: 32 start-page: 2001998 issue: 28 year: 2020 ident: 1161_CR103 publication-title: Adv. Mater. doi: 10.1002/adma.202001998 – volume: 11 start-page: 633 issue: 7 year: 2016 ident: 1161_CR97 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.44 – volume: 60 start-page: 8415 issue: 15 year: 2021 ident: 1161_CR124 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202013947 – volume: 5 start-page: 423 issue: 6 year: 2020 ident: 1161_CR6 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-020-0181-5 – volume: 10 start-page: 2102436 issue: 6 year: 2022 ident: 1161_CR83 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202102436 – volume: 9 start-page: 679 issue: 10 year: 2015 ident: 1161_CR138 publication-title: Nat. Photonics doi: 10.1038/nphoton.2015.156 – volume: 10 start-page: 895 issue: 6 year: 2016 ident: 1161_CR2 publication-title: Laser Photonics Rev. doi: 10.1002/lpor.201600065 – volume: 5 start-page: 1600704 issue: 2 year: 2017 ident: 1161_CR157 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201600704 – volume: 29 start-page: 1605242 issue: 41 year: 2017 ident: 1161_CR9 publication-title: Adv. Mater. doi: 10.1002/adma.201605242 – volume: 59 start-page: 6442 issue: 16 year: 2020 ident: 1161_CR110 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201915912 – volume: 12 start-page: 528 issue: 9 year: 2018 ident: 1161_CR119 publication-title: Nat. Photonics doi: 10.1038/s41566-018-0220-6 – volume: 28 start-page: 8132 issue: 22 year: 2016 ident: 1161_CR74 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b01329 – volume: 30 start-page: 173 year: 2016 ident: 1161_CR147 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.10.009 – volume: 8 start-page: 632 year: 2020 ident: 1161_CR101 publication-title: Front. Chem. doi: 10.3389/fchem.2020.00632 – volume: 14 start-page: 636 issue: 6 year: 2015 ident: 1161_CR33 publication-title: Nat. Mater. doi: 10.1038/nmat4271 – volume: 5 start-page: 3731 issue: 9 year: 2018 ident: 1161_CR68 publication-title: ACS Photonics doi: 10.1021/acsphotonics.8b00770 – volume: 9 start-page: 11310 issue: 11 year: 2015 ident: 1161_CR150 publication-title: ACS Nano doi: 10.1021/acsnano.5b04995 – volume: 10 start-page: 699 issue: 11 year: 2016 ident: 1161_CR35 publication-title: Nat. Photonics doi: 10.1038/nphoton.2016.185 – volume: 347 start-page: 519 issue: 6221 year: 2015 ident: 1161_CR29 publication-title: Science doi: 10.1126/science.aaa27 – volume: 14 start-page: 36781 issue: 32 year: 2022 ident: 1161_CR125 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c07208 – volume: 6 start-page: 1800679 issue: 22 year: 2018 ident: 1161_CR98 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201800679 – volume: 30 start-page: 1704611 issue: 8 year: 2018 ident: 1161_CR66 publication-title: Adv. Mater. doi: 10.1002/adma.201704611 – volume: 13 start-page: 3454 issue: 1 year: 2022 ident: 1161_CR107 publication-title: Nat. Commun. doi: 10.1038/s41467-022-31186-7 – volume: 6 start-page: 1801246 issue: 23 year: 2018 ident: 1161_CR104 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201801246 – volume: 5 start-page: 2000513 issue: 10 year: 2020 ident: 1161_CR52 publication-title: Adv. Mater. Technol. doi: 10.1002/admt.202000513 – volume: 9 start-page: 100086 year: 2022 ident: 1161_CR58 publication-title: Giant doi: 10.1016/j.giant.2021.100086 – volume: 4 start-page: 794 issue: 3 year: 2021 ident: 1161_CR108 publication-title: Matter doi: 10.1016/j.matt.2020.12.018 – volume: 33 start-page: 2003852 issue: 11 year: 2021 ident: 1161_CR85 publication-title: Adv. Mater. doi: 10.1002/adma.202003852 – volume: 141 start-page: 2623 issue: 6 year: 2019 ident: 1161_CR81 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b12948 – volume: 121 start-page: 102856 year: 2020 ident: 1161_CR12 publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2020.102856 – volume: 30 start-page: 1804450 issue: 46 year: 2018 ident: 1161_CR79 publication-title: Adv. Mater. doi: 10.1002/adma.201804450 – volume: 26 start-page: 1296 issue: 8 year: 2016 ident: 1161_CR149 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201504477 – volume: 13 start-page: 4560 issue: 1 year: 2022 ident: 1161_CR132 publication-title: Nat. Commun. doi: 10.1038/s41467-022-32309-w – volume: 10 start-page: 391 issue: 5 year: 2015 ident: 1161_CR30 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.90 – volume: 28 start-page: 4766 issue: 24 year: 2016 ident: 1161_CR4 publication-title: Adv. Mater. doi: 10.1002/adma.201505405 – volume: 35 start-page: 2207771 issue: 3 year: 2023 ident: 1161_CR88 publication-title: Adv. Mater. doi: 10.1002/adma.202207771 – volume: 30 start-page: 1706986 issue: 21 year: 2018 ident: 1161_CR153 publication-title: Adv. Mater. doi: 10.1002/adma.201706986 – volume: 32 start-page: 1908108 issue: 14 year: 2020 ident: 1161_CR144 publication-title: Adv. Mater. doi: 10.1002/adma.201908108 – volume: 8 start-page: 2000149 issue: 9 year: 2020 ident: 1161_CR84 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202000149 – volume: 5 start-page: 1700672 issue: 22 year: 2017 ident: 1161_CR137 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201700672 – volume: 4 start-page: 3835 issue: 12 year: 2021 ident: 1161_CR122 publication-title: Matter doi: 10.1016/j.matt.2021.11.011 – volume: 13 start-page: 1551 issue: 1 year: 2022 ident: 1161_CR78 publication-title: Nat. Commun. doi: 10.1038/s41467-022-29253-0 – volume: 16 start-page: 159 issue: 2 year: 2021 ident: 1161_CR94 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-00802-2 – volume: 12 start-page: 284 issue: 1 year: 2021 ident: 1161_CR151 publication-title: Nat. Commun. doi: 10.1038/s41467-020-20530-4 – volume: 4 start-page: 401 issue: 2 year: 2022 ident: 1161_CR25 publication-title: ACS Mater. Lett. doi: 10.1021/acsmaterialslett.1c00726 – volume: 24 start-page: 7373 issue: 46 year: 2014 ident: 1161_CR133 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201402020 – volume: 16 start-page: 7446 issue: 12 year: 2016 ident: 1161_CR86 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03119 – volume: 2 start-page: 139 issue: 1 year: 2019 ident: 1161_CR17 publication-title: InfoMat doi: 10.1002/inf2.12053 – volume: 144 start-page: 13823 issue: 30 year: 2022 ident: 1161_CR77 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c05082 – volume: 17 start-page: 394 issue: 5 year: 2018 ident: 1161_CR70 publication-title: Nat. Mater. doi: 10.1038/s41563-018-0018-4 – volume: 31 start-page: 2105855 issue: 48 year: 2021 ident: 1161_CR116 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202105855 – volume: 10 start-page: 333 issue: 5 year: 2016 ident: 1161_CR42 publication-title: Nat. Photonics doi: 10.1038/nphoton.2016.41 – volume: 370 start-page: 459 year: 2020 ident: 1161_CR130 publication-title: Science doi: 10.1126/science.abc853 – volume: 355 start-page: 1288 issue: 6331 year: 2017 ident: 1161_CR32 publication-title: Science doi: 10.1126/science.aal4211 – volume: 17 start-page: 2102884 issue: 40 year: 2021 ident: 1161_CR112 publication-title: Small doi: 10.1002/smll.202102884 – volume: 14 start-page: 14455 issue: 12 year: 2022 ident: 1161_CR145 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c24962 – volume: 32 start-page: 1905298 issue: 9 year: 2020 ident: 1161_CR71 publication-title: Adv. Mater. doi: 10.1002/adma.201905298 – volume: 3 start-page: 2100335 issue: 5 year: 2022 ident: 1161_CR80 publication-title: Adv. Photonics Res. doi: 10.1002/adpr.202100335 – volume: 13 start-page: 3659 issue: 3 year: 2019 ident: 1161_CR46 publication-title: ACS Nano doi: 10.1021/acsnano.9b00302 – volume: 29 start-page: 1603995 issue: 4 year: 2017 ident: 1161_CR91 publication-title: Adv. Mater. doi: 10.1002/adma.201603995 – volume: 28 start-page: 2043 issue: 10 year: 2016 ident: 1161_CR136 publication-title: Adv. Mater. doi: 10.1002/adma.201503774 – volume: 138 start-page: 16612 issue: 51 year: 2016 ident: 1161_CR41 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b11683 – volume: 14 start-page: 39451 issue: 34 year: 2022 ident: 1161_CR117 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c06856 – volume: 13 start-page: 6106 issue: 1 year: 2022 ident: 1161_CR67 publication-title: Nat. Commun. doi: 10.1038/s41467-022-33934-1 – volume: 365 start-page: 1017 year: 2019 ident: 1161_CR20 publication-title: Science doi: 10.1126/science.aax8814 – volume: 17 start-page: 2103855 issue: 47 year: 2021 ident: 1161_CR62 publication-title: Small doi: 10.1002/smll.202103855 – volume: 56 start-page: 8158 issue: 28 year: 2017 ident: 1161_CR36 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201703970 – volume: 10 start-page: 707 issue: 8 year: 2015 ident: 1161_CR82 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.112 – volume: 577 start-page: 209 issue: 7789 year: 2020 ident: 1161_CR93 publication-title: Nature doi: 10.1038/s41586-019-1868-x – volume: 34 start-page: 2108408 issue: 9 year: 2021 ident: 1161_CR65 publication-title: Adv. Mater. doi: 10.1002/adma.202108408 – volume: 114 start-page: 7216 issue: 28 year: 2017 ident: 1161_CR90 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1703860114 – volume: 3 start-page: 657 issue: 4 year: 2022 ident: 1161_CR118 publication-title: SmartMat doi: 10.1002/smm2.1120 – volume: 6 start-page: 8379 issue: 1 year: 2015 ident: 1161_CR126 publication-title: Nat. Commun. doi: 10.1038/ncomms9379 – volume: 15 start-page: 2100183 issue: 10 year: 2021 ident: 1161_CR15 publication-title: Phys. Status Solidi RRL doi: 10.1002/pssr.202100183 – volume: 29 start-page: 1806692 issue: 10 year: 2019 ident: 1161_CR128 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201806692 – volume: 32 start-page: 1907280 issue: 16 year: 2020 ident: 1161_CR146 publication-title: Adv. Mater. doi: 10.1002/adma.201907280 – volume: 9 start-page: 687 issue: 10 year: 2015 ident: 1161_CR135 publication-title: Nat. Photonics doi: 10.1038/nphoton.2015.175 – volume: 9 start-page: 2104598 issue: 5 year: 2022 ident: 1161_CR51 publication-title: Adv. Sci. doi: 10.1002/advs.202104598 – volume: 6 start-page: eabd3274 issue: 46 year: 2020 ident: 1161_CR121 publication-title: Sci. Adv. doi: 10.1126/sciadv.abd3274 – volume: 8 start-page: 742 issue: 1 year: 2017 ident: 1161_CR37 publication-title: Nat. Commun. doi: 10.1038/s41467-017-00788-x – volume: 8 start-page: 2004853 issue: 9 year: 2021 ident: 1161_CR72 publication-title: Adv. Sci. doi: 10.1002/advs.202004853 – volume: 20 start-page: 320 issue: 1 year: 2020 ident: 1161_CR24 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b03862 |
SSID | ssib052472754 ssib047348319 ssib044084216 ssj0000070760 ssib027973114 ssib051367739 |
Score | 2.5243592 |
SecondaryResourceType | review_article |
Snippet | Highlights
Multidimensional detection of intensity, wavelength, polarization, and angle of the incidence light significantly accelerates the development of... Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as... HighlightsMultidimensional detection of intensity, wavelength, polarization, and angle of the incidence light significantly accelerates the development of... Multidimensional detection of intensity, wavelength, polarization, and angle of the incidence light significantly accelerates the development of optical... Highlights Multidimensional detection of intensity, wavelength, polarization, and angle of the incidence light significantly accelerates the development of... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 187 |
SubjectTerms | Artificial intelligence Automation Crystal structure Crystal structure design Engineering Gratings (spectra) Luminous intensity Manufacturing engineering Micro/nano-structure manipulation Molecular structure Morphology Multifunctional photodetectors Nanoscale Science and Technology Nanotechnology Nanotechnology and Microengineering Optical communication Optoelectronic devices Optoelectronics Perovskite materials Perovskites Photometers Polarized light Review Robotics Working mechanism |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAvAkUZCRuYDWO7TjhBoVVhRRUqVTqzXJsR61UErSbIu29P7wzzmN3eV645LDxRtbMZ8-MZ_wNIa8LBz6xKlOmXFky6W3NCo4Pr8A4BSldg4Fi9SU_OpWfz9TZVqsvrAkb6IEHwR1AtNQgA0JIeSND7q0Iuqi1cLzQHnwB3H3B5m0FU4CkTGNHpk1-ENsqyy2WGomcLmJDZKaQuExv-DFVJsGuj4Z2cKQ1prBipzrOWa7TfLyBE-_hYdfmlIH5Y5jX4Gy9Y-ViM4DfebC_FmL-lI2NRm5xj9wdvVP6fpDKfXIrtA_InS3OwofkOl7ZRXM4nCLS47DsfqzwEJgen3d950MfMwGrd3Sx7L7RamrAy04AD4EeLtfgkV7Sk8hce7UM9GOsIqF9RyssDzyAHb9jqzi46gAH8eSfVra9mJqNPSKni09fD4_Y2MqBOXChepbZ2lkVMgs6xJBRKojztLNcB6klMuJY8Ey8CsLW3NU1YEZ40Xhb1i71pRSPyV7bteEpod7lTRDBN6lqpK8zwIK2OWDBqbIAUSaET6I3buQ5x3Ybl2ZmaI7qMqAuE9Vl1gl5M__n-8Dy8dfRH1Cj80hk6I4_AG7NiFvzL9wmZH_Cgxm3jZXJiqKE-E0IlZBX82tY8JjFsW3ornAMoLmEvVgn5MkAn3kmQoN7qvHjxQ6wdqa6-6a9OI-k4kiUr1PJE_J2wuBmXn-WxbP_IYvn5HaGiydWCe2TPcBfeAG-Xl-_jMv6Bo45R5E priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagXOCAeBMoyEjcwCKJ7TjhBgurCimoUqnUW-TYDq1UYpSkSHvnhzPjPLYLBYnLHjazq4n92TPjGX9DyMvcgE8si5hJUxRMWF2zPMEPK8E4OSFMg4Fi-Tk7OBafTuTJdCmsn6vd55Rk2KmXy27YGjlmYGMYJg8StrlObkiI3RHXqy3neKqwG9M2N4gtlcUlhhqBfC58S2ImkbRMbbkxZSrApk9GdnSiFaavQpe6JGGZirPp9s3Vau1YuNAI4Crv9c8izN8yscHAre-Q25NnSt-NULpLrrn2Hrl1ia_wPvkZruuiKRxPEOmh6_yPHg-A6eGpH7x1Q8gC9G_puvPfaDk332VHgAVHV90GvNFzehRYay86Rz-EChI6eFpiaeAb2O0964Nw6QED4dSflro9mxuNPSDH649fVgdsauPADLhPA0t1bbR0qW6Ew3BRSIjxlNGJckIJZMPR4JVY6biuE1PXgBdueWN1UZvYFoI_JHutb91jQq3JGsedbWLZCFunteJKZ8oKI4schjIiyTz0lZk4zrHVxnm1sDOH6apguqowXdUmIq-W33wfGT7-Kf0eZ3SRRHbu8IXvvlbTYq8gwm-QtcPFCbxzZjV3KgddTZKDrimPyP6Mh2raMvoqzfMCYjfOZUReLI9hsWMGR7fOX6AMoLmAfVhF5NEIn0UTrsA1Vfjn-Q6wdlTdfdKenQZCcSTJV7FIIvJ6xuBWr7-PxZP_E39Kbqa4TEIt0D7ZA6S5Z-DRDfXzsIB_Ad8HPOg priority: 102 providerName: Springer Nature |
Title | Multifunctional Perovskite Photodetectors: From Molecular-Scale Crystal Structure Design to Micro/Nano-scale Morphology Manipulation |
URI | https://link.springer.com/article/10.1007/s40820-023-01161-y https://www.ncbi.nlm.nih.gov/pubmed/37515723 https://www.proquest.com/docview/2889585335 https://www.proquest.com/docview/2844090317 https://pubmed.ncbi.nlm.nih.gov/PMC10387041 https://doaj.org/article/132f1215e01f4e6da3e78b73c187d423 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9MwFLbYeoED4jcZozISN7CWxHaccEFrtzIhdaoYk3aLHNvZJo14tN2k3vnDec9N2pUfu-SQOJFjf37v2c_-PkLe5wZiYlnETJqiYMLqiuUJXqwE5-SEMDVOFMfH2dGp-Homz9oFt1m7rbKzicFQW29wjXwvzfMCQlvO5efrnwxVozC72kpobJEemOAcJl-9weHx5FuHqFShMtM6T4jyyuIOW41Abhe-JjSTSGCm1jyZMhXg31uHuwyoFaaygmJdkrBMxVl7Eiecx0P15piBG2SY30jYYsPbBVGAf0Wyf2_I_CMrG5zd6Al53EapdH8Jq6fkgWuekUd3uAufk1_h6C66xeVqIp24qb-d4WIwnVz4ubduHjICs090NPU_6LgT4mUngAtHh9MFRKZX9CQw2N5MHT0Iu0no3NMxbhPcA8vv2SwUHnvAQ8gA0LFuLjvRsRfkdHT4fXjEWkkHZiCUmrNUV0ZLl-paOJw6CgnzPWV0opxQAplxNEQoVjquq8RUFWCHW15bXVQmtoXgL8l24xv3mlBrstpxZ-tY1sJWaaW40pmywsgih6aMSNI1fWlavnOU3bgqV0zNobtK6K4ydFe5iMiH1TvXS7aPe0sPsEdXJZGpO9zw0_OyHfglzPZrZPBwcQL_nFnNncqhribJoa4pj8huh4eyNR-zcg32iLxbPYaBj9kc3Th_g2UAzQXYZBWRV0v4rGrCFYSpCj-ebwBro6qbT5rLi0AujoT5KhZJRD52GFzX6_9tsXP_b7whD1McFmEf0C7ZBmS5txDNzas-2cpHX_qktz84GIz67QCGu8NU4DUb9sM6yW93SUZC |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxJtAASPBCawmsR0nSAhBy7KlTVWprdRb6tgOrVSSsrsF7Z3fw29kxkl2uzx66yWHxIkmnvHM2GN_HyEvUgM5scxCJk2WMWF1ydIIL1ZCcHJCmAonivl2MtwXnw_kwRL51Z-FwW2VvU_0jto2BtfIV-M0zSC15Vy-O_3GkDUKq6s9hUZrFptu-gOmbOO3G-ug35dxPPi4tzZkHasAMxDNJyzWpdHSxboSDmcvQsKUQxkdKSeUQHAWDUHSSsd1GZmyBPG55ZXVWWlCmwkO371CrgrOMxxR6eBTb7-xQh6oeVUSyZzFOWwcgUgyfA6fJhEuTc1ROWUsIJvownubvissnHl-vChiiQqT7tyPP_2HXNEhg6DLsJoSselCbPUUBP_Km__e_vlHDdiH1sEtcrPLien71ohvkyVX3yE3ziEl3iU__UFhDMLt2iXdcaPm-xiXnunOUTNprJv4-sP4DR2Mmq8072l_2S5YoaNroynkwSd01-Plno0cXfd7V-ikoTluSlyFONOwsW-cN2B9vt5Ac10f9xRn98j-paj6Plmum9o9JNSapHLc2SqUlbBlXCqudKKsMDJLoSsDEvVdX5gOXR1JPk6KGS60V1cB6iq8uoppQF7N3jltsUUubP0BNTpribjg_kYz-lJ0bqaIeFwhXogLI_jnxGruVAqymigFWWMekJXeHorOWY2L-dAKyPPZY3AzWDvStWvOsA1YcwYRQAXkQWs-M0m4gqRY4cfTBcNaEHXxSX185KHMEZ5fhSIKyOveBudy_b8vHl38G8_IteFevlVsbWxvPibXYxwifgfSClkGK3NPII-clE_94KXk8LK9xW-qYH5I |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSAgOiGcJFDASN7A2ie044QZbVuWx1UqlUm-RYzu0Ukmq3RRp7_xwZpzXLhQkLntIJquJ_dkzkxl_Q8ir1IBPLLOQSZNlTFhdsDTCHyvBODkhTImB4vwwOTgWn07kycYpfl_t3qck2zMNyNJUNZMLW06Gg2_YJjlkYG8YJhIitr5ObkCkEmFR33TkH48VdmYa84TYXllssNUI5HbhI6GZRAIzNfJkyliAfe8MbutQK0xl-Y51UcQSFSbdSZyr1dqydr4pwFWe7J8Fmb9lZb2xm90ldzovlb5rYXWPXHPVfXJ7g7vwAfnpj-6iWWy_JtKFW9Y_VvgxmC5O66a2rvEZgdVbOlvW3-m8b8TLjgAXjk6Xa_BMz-mRZ7C9XDq676tJaFPTOZYJTmDnr9nKC89rwIPPANC5rs76pmMPyfHsw9fpAetaOjADrlTDYl0YLV2sS-EwdBQS4j1ldKScUAKZcTR4KFY6rovIFAVgh1teWp0VJrSZ4I_ITlVX7jGh1iSl486WoSyFLeJCcaUTZYWRWQpDGZCoH_rcdHzn2HbjPB-Ymv105TBduZ-ufB2Q18MzFy3bxz-l3-OMDpLI1O0v1Mtvebfwc4j2S2TwcGEE75xYzZ1KQVcTpaBrzAOy1-Mh77aPVR6naQZxHOcyIC-H27DwMZujK1dfogygOYM9WQVkt4XPoAlX4KYq_PN0C1hbqm7fqc5OPbk4EuarUEQBedNjcNTr72Px5P_EX5Cbi_1Z_uXj4een5FaMK8aXCO2RHQCdewaOXlM892v5FxjlRBk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multifunctional+Perovskite+Photodetectors%3A+From+Molecular-Scale+Crystal+Structure+Design+to+Micro%2FNano-scale+Morphology+Manipulation&rft.jtitle=Nano-micro+letters&rft.au=Zhao%2C+Yingjie&rft.au=Yin%2C+Xing&rft.au=Li%2C+Pengwei&rft.au=Ren%2C+Ziqiu&rft.date=2023-12-01&rft.pub=Springer+Nature+B.V&rft.issn=2311-6706&rft.eissn=2150-5551&rft.volume=15&rft.issue=1&rft.spage=187&rft_id=info:doi/10.1007%2Fs40820-023-01161-y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon |