Multifunctional Perovskite Photodetectors: From Molecular-Scale Crystal Structure Design to Micro/Nano-scale Morphology Manipulation

Highlights Multidimensional detection of intensity, wavelength, polarization, and angle of the incidence light significantly accelerates the development of optical information technology and artificial intelligence fields. The first comprehensive overview of the advancement of multifunctional photod...

Full description

Saved in:
Bibliographic Details
Published inNano-micro letters Vol. 15; no. 1; pp. 187 - 30
Main Authors Zhao, Yingjie, Yin, Xing, Li, Pengwei, Ren, Ziqiu, Gu, Zhenkun, Zhang, Yiqiang, Song, Yanlin
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.12.2023
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Highlights Multidimensional detection of intensity, wavelength, polarization, and angle of the incidence light significantly accelerates the development of optical information technology and artificial intelligence fields. The first comprehensive overview of the advancement of multifunctional photodetectors for perovskite semiconductors ranging from polarized light detection, spectral detection, and angle-sensing detection to self-powered detection is summarized. The existing problems and perspectives are discussed which can inspire more researchers to rationally design new perovskite materials and micro/nano-structure for high-performance multifunctional photodetectors. Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implementation of multifunctional detectors is based on the physical combination of optical lenses, gratings, and multiple photodetectors, the large size and its complex structure hinder the miniaturization, lightweight, and integration of devices. In contrast, perovskite materials have achieved remarkable progress in the field of multifunctional photodetectors due to their diverse crystal structures, simple morphology manipulation, and excellent optoelectronic properties. In this review, we first overview the crystal structures and morphology manipulation techniques of perovskite materials and then summarize the working mechanism and performance parameters of multifunctional photodetectors. Furthermore, the fabrication strategies of multifunctional perovskite photodetectors and their advancements are highlighted, including polarized light detection, spectral detection, angle-sensing detection, and self-powered detection. Finally, the existing problems of multifunctional detectors and the perspectives of their future development are presented.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ISSN:2311-6706
2150-5551
2150-5551
DOI:10.1007/s40820-023-01161-y