Fabrication and Characterization of a Thermostable Quinoprotein Aldose Sugar Dehydrogenase Immobilized Electrode
We fabricated a thermostable quinoprotein aldose sugar dehydrogenase (tPQQ-ASD derived from a hyperthermophilic archaeon Pyrobaculum aerophilum) immobilized electrode. The electrode was prepared by immobilizing agarose gel mixed with the enzyme and carbon nanofiber (CNF) on a carbon paste (CP) elect...
Saved in:
Published in | Analytical Sciences Vol. 29; no. 1; pp. 79 - 83 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
The Japan Society for Analytical Chemistry
01.01.2013
Springer Nature Singapore Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We fabricated a thermostable quinoprotein aldose sugar dehydrogenase (tPQQ-ASD derived from a hyperthermophilic archaeon Pyrobaculum aerophilum) immobilized electrode. The electrode was prepared by immobilizing agarose gel mixed with the enzyme and carbon nanofiber (CNF) on a carbon paste (CP) electrode containing p-benzoquinone (BQ) as an electron mediator. The electrocatalytic response was clearly observed by the addition of D-glucose at the electrode. The electrode properties such as pH, temperature dependency and substrate selectivity basically followed the enzyme properties. The current response against D-glucose increased with measurement temperatures up to 70°C, and response perturbation caused by dissolved oxygen level was not observed at the electrode. As for the results of long-term stability evaluation, the current response was stable for 30 days when the electrode was stored in HEPES buffer solution (pH 7.0) at 4°C. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0910-6340 1348-2246 |
DOI: | 10.2116/analsci.29.79 |