Applications of 3D printed bone tissue engineering scaffolds in the stem cell field
Due to traffic accidents, injuries, burns, congenital malformations and other reasons, a large number of patients with tissue or organ defects need urgent treatment every year. The shortage of donors, graft rejection and other problems cause a deficient supply for organ and tissue replacement, repai...
Saved in:
Published in | Regenerative therapy Vol. 16; pp. 63 - 72 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.03.2021
Japanese Society for Regenerative Medicine Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Due to traffic accidents, injuries, burns, congenital malformations and other reasons, a large number of patients with tissue or organ defects need urgent treatment every year. The shortage of donors, graft rejection and other problems cause a deficient supply for organ and tissue replacement, repair and regeneration of patients, so regenerative medicine came into being. Stem cell therapy plays an important role in the field of regenerative medicine, but it is difficult to fill large tissue defects by injection alone. The scientists combine three-dimensional (3D) printed bone tissue engineering scaffolds with stem cells to achieve the desired effect. These scaffolds can mimic the extracellular matrix (ECM), bone and cartilage, and eventually form functional tissues or organs by providing structural support and promoting attachment, proliferation and differentiation. This paper mainly discussed the applications of 3D printed bone tissue engineering scaffolds in stem cell regenerative medicine. The application examples of different 3D printing technologies and different raw materials are introduced and compared. Then we discuss the superiority of 3D printing technology over traditional methods, put forward some problems and limitations, and look forward to the future. |
---|---|
AbstractList | Due to traffic accidents, injuries, burns, congenital malformations and other reasons, a large number of patients with tissue or organ defects need urgent treatment every year. The shortage of donors, graft rejection and other problems cause a deficient supply for organ and tissue replacement, repair and regeneration of patients, so regenerative medicine came into being. Stem cell therapy plays an important role in the field of regenerative medicine, but it is difficult to fill large tissue defects by injection alone. The scientists combine three-dimensional (3D) printed bone tissue engineering scaffolds with stem cells to achieve the desired effect. These scaffolds can mimic the extracellular matrix (ECM), bone and cartilage, and eventually form functional tissues or organs by providing structural support and promoting attachment, proliferation and differentiation. This paper mainly discussed the applications of 3D printed bone tissue engineering scaffolds in stem cell regenerative medicine. The application examples of different 3D printing technologies and different raw materials are introduced and compared. Then we discuss the superiority of 3D printing technology over traditional methods, put forward some problems and limitations, and look forward to the future. Due to traffic accidents, injuries, burns, congenital malformations and other reasons, a large number of patients with tissue or organ defects need urgent treatment every year. The shortage of donors, graft rejection and other problems cause a deficient supply for organ and tissue replacement, repair and regeneration of patients, so regenerative medicine came into being. Stem cell therapy plays an important role in the field of regenerative medicine, but it is difficult to fill large tissue defects by injection alone. The scientists combine three-dimensional (3D) printed bone tissue engineering scaffolds with stem cells to achieve the desired effect. These scaffolds can mimic the extracellular matrix (ECM), bone and cartilage, and eventually form functional tissues or organs by providing structural support and promoting attachment, proliferation and differentiation. This paper mainly discussed the applications of 3D printed bone tissue engineering scaffolds in stem cell regenerative medicine. The application examples of different 3D printing technologies and different raw materials are introduced and compared. Then we discuss the superiority of 3D printing technology over traditional methods, put forward some problems and limitations, and look forward to the future.Due to traffic accidents, injuries, burns, congenital malformations and other reasons, a large number of patients with tissue or organ defects need urgent treatment every year. The shortage of donors, graft rejection and other problems cause a deficient supply for organ and tissue replacement, repair and regeneration of patients, so regenerative medicine came into being. Stem cell therapy plays an important role in the field of regenerative medicine, but it is difficult to fill large tissue defects by injection alone. The scientists combine three-dimensional (3D) printed bone tissue engineering scaffolds with stem cells to achieve the desired effect. These scaffolds can mimic the extracellular matrix (ECM), bone and cartilage, and eventually form functional tissues or organs by providing structural support and promoting attachment, proliferation and differentiation. This paper mainly discussed the applications of 3D printed bone tissue engineering scaffolds in stem cell regenerative medicine. The application examples of different 3D printing technologies and different raw materials are introduced and compared. Then we discuss the superiority of 3D printing technology over traditional methods, put forward some problems and limitations, and look forward to the future. |
Author | Guo, Shu Wang, Ting Su, Xin |
Author_xml | – sequence: 1 givenname: Xin orcidid: 0000-0002-2208-9750 surname: Su fullname: Su, Xin email: 915165607@qq.com – sequence: 2 givenname: Ting surname: Wang fullname: Wang, Ting email: twang@cmu.edu.cn – sequence: 3 givenname: Shu surname: Guo fullname: Guo, Shu email: sguo@cmu.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33598507$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1rGzEQhpeS0qRp_kAPRcde7Opr9QGlENKvQKCHtmeh1Y5smbXkSnIg_75aOylJDwGBhGbe5x1m5nV3ElOErntL8JJgIj5slhnqekkxJUvcDpYvujPKerpgFPOTR-_T7qKUDcaYqJ5QrV51p4z1WvVYnnU_L3e7KThbQ4oFJY_YZ7TLIVYY0dAcUQ2l7AFBXIUI0CIrVJz1Pk1jQSGiugZUKmyRg2lCPsA0vuleejsVuLi_z7vfX7_8uvq-uPnx7frq8mbhBCF1IR11DDDTzGFvtcXYcUm5H_ygqeiVwm6wXkiqWW-906MShMEAxA6gQWh23l0fuWOyG9Oq3tp8Z5IN5vCR8srYXIObwBDGlJSCCMoFpxwrwhoIuJC9lZzPrE9H1m4_bGF0EGu20xPo00gMa7NKt0YqoXrFG-D9PSCnP3so1WxDmXtiI6R9MZRrggWjh7rfPfb6Z_IwlZagjgkup1IyeONCPYyoWYfJEGzmHTAbM--AmXfA4HYOUvqf9IH-rOjjUQRtWrcBsikuQHQwhgyutnaG5-R_AVhsydA |
CitedBy_id | crossref_primary_10_1002_ibra_12087 crossref_primary_10_1021_acsbiomaterials_4c01764 crossref_primary_10_3390_jfb14100530 crossref_primary_10_3390_pharmaceutics15051385 crossref_primary_10_3390_polym14050899 crossref_primary_10_3390_ijms23084462 crossref_primary_10_3390_surgeries3030018 crossref_primary_10_1016_j_mtnano_2023_100385 crossref_primary_10_1007_s12015_024_10697_4 crossref_primary_10_1016_j_jphotochem_2023_115064 crossref_primary_10_3389_frans_2024_1505510 crossref_primary_10_1016_j_biomaterials_2022_121639 crossref_primary_10_1002_smll_202402419 crossref_primary_10_3390_biomimetics9030154 crossref_primary_10_1016_j_eurpolymj_2023_112059 crossref_primary_10_1016_j_jmst_2021_11_084 crossref_primary_10_1007_s10439_024_03479_z crossref_primary_10_3390_ijms231710109 crossref_primary_10_3390_bioengineering10030287 crossref_primary_10_3390_jfb15010007 crossref_primary_10_1007_s40883_022_00286_7 crossref_primary_10_1088_2057_1976_acc6d5 crossref_primary_10_3390_polym16010165 crossref_primary_10_3390_ma15124280 crossref_primary_10_3390_cells13121065 crossref_primary_10_1002_smm2_1244 crossref_primary_10_1039_D3NA00291H crossref_primary_10_1093_rb_rbad093 crossref_primary_10_1039_D3RA01700A crossref_primary_10_1007_s10856_022_06708_w crossref_primary_10_1088_1758_5090_acbe21 crossref_primary_10_1016_j_ymeth_2022_08_003 crossref_primary_10_1108_RPJ_01_2021_0011 crossref_primary_10_3389_fmats_2021_719536 crossref_primary_10_3390_biomimetics8020246 crossref_primary_10_1016_j_bprint_2025_e00400 crossref_primary_10_1016_j_jmbbm_2021_104887 crossref_primary_10_1016_j_ijbiomac_2023_124039 crossref_primary_10_3390_gels10030182 crossref_primary_10_1016_j_molmed_2021_05_001 crossref_primary_10_1089_ten_teb_2021_0127 crossref_primary_10_1021_acsomega_3c10271 crossref_primary_10_34172_japid_2024_015 crossref_primary_10_1016_j_matdes_2023_111885 crossref_primary_10_1002_btm2_10503 crossref_primary_10_1039_D3TB01236K crossref_primary_10_1088_1758_5090_ad905f crossref_primary_10_1007_s40430_021_03280_2 crossref_primary_10_1016_j_heliyon_2023_e21872 crossref_primary_10_3390_ijms23063352 crossref_primary_10_1007_s40032_024_01112_5 crossref_primary_10_2139_ssrn_4147190 crossref_primary_10_1021_acsbiomaterials_3c00871 crossref_primary_10_2109_jcersj2_21108 crossref_primary_10_1002_anbr_202300035 crossref_primary_10_1016_j_msec_2021_112372 crossref_primary_10_3389_fmats_2023_1058050 crossref_primary_10_22201_ceiich_24485691e_2025_34_69828 crossref_primary_10_3390_biomimetics9080503 crossref_primary_10_1016_j_matchemphys_2023_127515 crossref_primary_10_1002_mame_202100863 crossref_primary_10_1186_s13287_022_03204_4 crossref_primary_10_1007_s44174_024_00254_5 crossref_primary_10_1016_j_matdes_2024_113277 crossref_primary_10_1016_j_eurpolymj_2023_112255 crossref_primary_10_1016_j_jmbbm_2024_106470 crossref_primary_10_3390_biomimetics8010016 crossref_primary_10_3389_fphar_2022_1044726 crossref_primary_10_3389_fphar_2022_920824 crossref_primary_10_1007_s41683_024_00126_6 crossref_primary_10_1016_j_mattod_2023_05_030 crossref_primary_10_1021_acsomega_3c07062 crossref_primary_10_7759_cureus_57396 crossref_primary_10_15406_atroa_2024_10_00147 crossref_primary_10_3390_app11188677 crossref_primary_10_1007_s00210_023_02541_2 crossref_primary_10_1016_j_carbpol_2024_121945 crossref_primary_10_1002_pat_5445 crossref_primary_10_1016_j_ijbiomac_2022_07_140 crossref_primary_10_3390_molecules30020276 crossref_primary_10_1002_pol_20210251 crossref_primary_10_1016_j_ijbiomac_2023_124004 crossref_primary_10_1016_j_jmbbm_2023_105727 crossref_primary_10_3934_matersci_2022021 crossref_primary_10_1016_j_ceramint_2022_06_204 crossref_primary_10_1016_j_ijbiomac_2022_04_056 crossref_primary_10_1111_jace_20508 crossref_primary_10_1186_s40902_022_00340_y crossref_primary_10_1016_j_colsurfa_2023_132740 crossref_primary_10_3390_biomedicines12051090 crossref_primary_10_3390_pharmaceutics15061728 crossref_primary_10_3389_fbioe_2023_1127929 crossref_primary_10_1002_adhm_202402415 crossref_primary_10_1007_s00266_024_03871_z crossref_primary_10_1016_j_ceramint_2024_09_294 crossref_primary_10_3390_gels8070421 crossref_primary_10_1016_j_nanoms_2024_08_001 crossref_primary_10_1016_j_ceramint_2023_01_075 crossref_primary_10_3390_pharmaceutics15102405 crossref_primary_10_1002_adhm_202201384 crossref_primary_10_1016_j_ijbiomac_2022_03_096 crossref_primary_10_3390_polym15112473 crossref_primary_10_1007_s44411_024_00011_6 crossref_primary_10_1016_j_carpta_2024_100640 crossref_primary_10_1016_j_eurpolymj_2023_112352 crossref_primary_10_3390_ma14123149 crossref_primary_10_3390_ma15031054 crossref_primary_10_1016_j_stlm_2024_100149 crossref_primary_10_1016_j_jot_2023_08_006 crossref_primary_10_3389_fbioe_2022_921092 crossref_primary_10_1016_j_matchemphys_2022_125785 crossref_primary_10_3389_fcell_2024_1459891 crossref_primary_10_3390_coatings13091644 crossref_primary_10_2174_0113852728293437240227065230 crossref_primary_10_34133_bmr_0127 crossref_primary_10_1016_j_tibtech_2024_07_017 crossref_primary_10_1002_adhm_202202766 crossref_primary_10_1002_jbm_a_37455 crossref_primary_10_1021_acsbiomaterials_3c01485 crossref_primary_10_1089_ten_teb_2023_0124 |
Cites_doi | 10.1007/s10544-018-0301-9 10.2147/IJN.S217245 10.1088/1758-5082/3/3/034109 10.1088/2053-1591/ab1dee 10.1007/s40436-014-0097-7 10.18063/ijb.v5i2.197 10.1088/2399-7532/ab201f 10.1016/j.biomaterials.2012.04.050 10.1002/advs.201900867 10.1016/j.msec.2019.110128 10.1002/jbm.a.36289 10.1002/ase.1805 10.1016/j.prosdent.2020.06.026 10.3390/gels6010010 10.3390/biom10010052 10.1088/1758-5090/8/3/035020 10.1039/C8BM01269E 10.3390/cells8080886 10.1039/C9RA10275B 10.1016/j.stem.2020.09.014 10.1067/j.cpradiol.2015.07.009 10.1002/adhm.201500168 10.1016/j.bioactmat.2017.10.001 10.1089/3dp.2014.0006 10.1016/j.colsurfb.2020.111056 10.3390/ma13214714 10.1002/jbm.a.36490 10.1007/s10856-019-6257-3 10.1016/j.cell.2006.07.024 10.1088/1758-5082/3/2/025004 10.2147/IJN.S259678 10.1002/jbm.b.34417 10.1016/j.dental.2019.04.004 10.3390/ijms21093401 10.1016/j.msec.2019.04.011 10.1016/j.bprint.2019.e00066 10.2147/IJN.S152105 10.1016/j.matdes.2018.03.002 10.2174/1574887112666170821165206 10.1038/s41598-019-54148-4 10.3390/mi10070480 10.1016/j.msec.2019.01.127 10.1016/j.msec.2019.04.067 10.3389/fbioe.2020.00824 10.1186/s12951-020-00594-6 10.1088/1758-5090/aa9b4e 10.1007/s10856-015-5566-4 10.3390/ijms21030694 10.1177/0885328216638636 10.1088/1758-5090/ab78ed 10.1063/1.4935926 10.1080/17460441.2020.1767579 10.1111/ocr.12159 10.1108/13552540410512525 10.1016/j.ijpharm.2019.04.026 10.1098/rstb.2014.0375 10.1021/bm0605311 10.3390/polym12030650 10.1088/1748-605X/ab4166 10.1002/sctm.17-0129 10.1088/1758-5090/aaa15b 10.1243/095441105X69051 10.1002/bit.26480 10.1243/09544119JEIM411 10.1039/C9NR07643C 10.1021/acs.iecr.8b05537 10.1002/jbm.b.34580 10.1136/medethics-2015-103347 10.1002/1439-2054(20001001)282:1<17::AID-MAME17>3.0.CO;2-8 10.1080/0142159X.2020.1841127 10.1021/am502977z 10.3389/fbioe.2020.00552 10.1108/RPJ-01-2013-0012 10.1088/1758-5082/2/2/025002 10.1016/S1007-0214(09)70059-8 10.1016/j.carbpol.2020.116914 10.1016/j.mattod.2013.11.017 10.1016/j.msec.2019.03.014 10.3390/ma12203419 10.1016/j.actbio.2017.03.006 10.1557/adv.2020.117 10.1016/j.reth.2016.05.002 10.1021/acsami.9b01472 10.1111/nyas.14251 10.1016/j.celrep.2020.03.040 10.1016/j.msec.2020.110844 10.1021/acsnano.9b04723 |
ContentType | Journal Article |
Copyright | 2021 The Japanese Society for Regenerative Medicine 2021 The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. 2021 The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. 2021 The Japanese Society for Regenerative Medicine |
Copyright_xml | – notice: 2021 The Japanese Society for Regenerative Medicine – notice: 2021 The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. – notice: 2021 The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. 2021 The Japanese Society for Regenerative Medicine |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.reth.2021.01.007 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2352-3204 |
EndPage | 72 |
ExternalDocumentID | oai_doaj_org_article_1338776162464240813be1e4675a7449 PMC7868584 33598507 10_1016_j_reth_2021_01_007 S2352320421000079 |
Genre | Journal Article Review |
GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS EJD FDB GROUPED_DOAJ HYE HZ~ IPNFZ KQ8 M41 M~E NCXOZ O9- OK1 RIG ROL RPM SSZ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION NPM 7X8 5PM |
ID | FETCH-LOGICAL-c611t-7c2c3e0393c0fa9a00c4724fbfb9265880cbaf672935afc9d8613ebe1abe9e693 |
IEDL.DBID | DOA |
ISSN | 2352-3204 |
IngestDate | Wed Aug 27 01:29:39 EDT 2025 Thu Aug 21 18:31:12 EDT 2025 Fri Jul 11 10:46:05 EDT 2025 Mon Jul 21 06:07:01 EDT 2025 Thu Apr 24 22:51:40 EDT 2025 Tue Jul 01 03:44:11 EDT 2025 Fri Feb 23 02:44:16 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | LIPUS PRF rBMSCs SLA STL MSCs SLM HAp ESCs dECM CHMA CAD AM iPS BCP DCM CAP Stem cells PCL BMSCs TCP hMSCs hADSC PPSU Scaffold materials pcHμPs PDA SF-BG FDM MBG/SA–SA ABS LDM PLLA ASCs SCAPs PEGDA GO RAD16-I Bone tissue engineering HTy ECM PED 3D CT PC PEG PLGA HA PVA Alg 3D printing RAD16-I, a soft nanofibrous self-assembling peptide GO, graphene oxide MBG/SA–SA, mesoporous bioactive glass/sodium alginate-sodium alginate ECM, extracellular matrix LIPUS, low intensity pulsed ultrasound HTy, 4-hydroxyphenethyl 2-(4-hydroxyphenyl) acetate hMSCs, human mesenchymal stem cells SLA, Stereolithography HAp, hydroxyapatite nanoparticles PLLA, poly l-lactide iPS, induced pluripotent stem ASCs, adult stem cells dECM, decellularized bovine cartilage extracellular matrix pcHμPs, novel self-healable pre-cross- linked hydrogel microparticles SLM, Selective Laser Melting ABS, Acrylonitrile Butadiene Styrene plastic AM, additive manufacturing PLGA, poly (lactide-co-glycolide) 3D, three-dimensional CAD, computer-aided design Alg, alginate BMSCs, bone marrow-derived mesenchymal stem cells PCL, polycraprolactone CAP, cold atmospheric plasma HA, hydroxyapatite SCAPs, human stem cells from the apical papilla SF-BG, silk fibroin and silk fibroin-bioactive glass CHMA, chitosan methacrylate FDM, fused deposition molding CT, computed tomography DCM, dichloromethane TCP, β-tricalcium phosphate PED, Precision Extrusion Deposition STL, standard tessellation language PEG, Polyethylene glycol rBMSCs, rat bone marrow stem cells PC, Polycarbonate MSCs, Marrow stem cells BCP, biphasic calcium phosphate PDA, polydopamine PVA, polyvinyl alcohol PRF, platelet-rich fibrin hADSC, human adipose derived stem cells PEGDA, poly (ethylene glycol) diacrylate LDM, Low Temperature Deposition Modeling ESCs, embryonic stem cells PPSU, Polyphenylene sulfone resins |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2021 The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c611t-7c2c3e0393c0fa9a00c4724fbfb9265880cbaf672935afc9d8613ebe1abe9e693 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-2208-9750 |
OpenAccessLink | https://doaj.org/article/1338776162464240813be1e4675a7449 |
PMID | 33598507 |
PQID | 2491063269 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1338776162464240813be1e4675a7449 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7868584 proquest_miscellaneous_2491063269 pubmed_primary_33598507 crossref_citationtrail_10_1016_j_reth_2021_01_007 crossref_primary_10_1016_j_reth_2021_01_007 elsevier_sciencedirect_doi_10_1016_j_reth_2021_01_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Regenerative therapy |
PublicationTitleAlternate | Regen Ther |
PublicationYear | 2021 |
Publisher | Elsevier B.V Japanese Society for Regenerative Medicine Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Japanese Society for Regenerative Medicine – name: Elsevier |
References | Mostafaei, Rodriguez De Vecchis, Buckenmeyer, Wasule, Brown, Chmielus (bib49) 2019; 102 Samsonraj, Raghunath, Nurcombe, Hui, van Wijnen, Cool (bib3) 2017; 6 Goodridge, Dalgarno, Wood (bib43) 2006; 220 Chen, Li, Cui, Dong, Yu (bib7) 2020; 15 Cader, Rance, Alexander, Goncalves, Roberts, Tuck (bib48) 2019; 564 Prasopthum, Shakesheff, Yang (bib13) 2018; 10 Li, Liu, Crook, Wallace (bib82) 2020; 8 Prasopthum, Jiang, Lv, Xia, Ma (bib80) 2019; 11 Cheng, Huang (bib47) 2020; 12 Van Damme, Briant, Blondeel, Van Vlierberghe (bib56) 2020; 5 Do, Khorsand, Geary, Salem (bib10) 2015; 4 Young, Quayle, Adams, Bertram, McMenamin (bib61) 2019; 12 Carvalho, Silva, Udangawa, Cabral, Ferreira, da Silva (bib67) 2019; 99 Gremare, Guduric, Bareille, Heroguez, Latour, L’Heureux (bib23) 2018; 106 Whiting, Kerby, Coffey, da Cruz, McKernan (bib2) 2015; 370 Degli Esposti, Chiellini, Bondioli, Morselli, Fabbri (bib14) 2019; 100 Fu, Du, Zhu, Tian, Wei, Zhu (bib75) 2019; 14 Tao, Kort-Mascort, Lin, Pham, Charbonneau, ElKashty (bib65) 2019; 10 Aliabouzar, Lee, Zhou, Zhang, Sarkar (bib17) 2018; 115 Billiet, Vandenhaute, Schelfhout, Van Vlierberghe, Dubruel (bib33) 2012; 33 Rajaram, Schreyer, Chen (bib34) 2014; 1 Moncal, Aydin, Abu-Laban, Heo, Rizk, Tucker (bib84) 2019; 105 Turnbull, Clarke, Picard, Riches, Jia, Han (bib20) 2018; 3 Xiao, Dalgarno, Wood, Goodridge, Ohtsuki (bib42) 2008; 222 McMenamin, Hussey, Chin, Alam, Quayle, Coupland (bib62) 2020 Chaji, Al-Saleh, Gomillion (bib77) 2020; 6 Zou, Jiang, Lv, Xia, Ma (bib81) 2020; 18 Bellini (bib28) 2002 Tian, Zhang, Tian, Zhang, Wang (bib25) 2020; 10 Landers, Mülhaupt (bib32) 2000; 282 De Maria, De Acutis, Vozzi (bib57) 2015 Nakamatsu, Torres, Troncoso, Min-Lin, Boccaccini (bib12) 2006; 7 Hamid, Snyder, Wang, Timmer, Hammer, Guceri (bib29) 2011; 3 Guillaume, Geven, Sprecher, Stadelmann, Grijpma, Tang (bib36) 2017; 54 Yan, Li, Zhang, Lin, Wu (bib39) 2009; 14 Xu, Li, Suo, Yan, Liu, Wang (bib31) 2010; 2 Simoneti, Pereira-Cenci, Dos Santos (bib16) 2020 Lee, Yan, Zhou, Cui, Esworthy, Hann (bib38) 2020; 111 Wang, Shor, Darling, Khalil, Sun, Güçeri (bib27) 2004; 10 Fahimipour, Dashtimoghadam, Mahdi Hasani-Sadrabadi, Vargas, Vashaee, Lobner (bib89) 2019; 35 Tsujimoto, Kasahara, Sueta, Araoka, Sakamoto, Okada (bib6) 2020; 31 Vermeulen, Haddow, Seymour, Faulkner-Jones, Shu (bib79) 2017; 43 Nowicki, Zhu, Sarkar, Rao, Zhang (bib55) 2020; 17 Chi, Chen, He, Chen, Tu, Liu (bib71) 2020; 15 Bhargav, Min, Wen Feng, Fuh, Rosa (bib51) 2020; 108 Zhang, Cong, Osi, Zhou, Huang, Zaccaria (bib54) 2020; 30 Zhou, Yu, Shi, Ling, Zeng, Chen (bib74) 2019; 13 Bollman, Malbrue, Li, Yao, Guo, Yao (bib88) 2020; 1463 Yamanaka (bib9) 2020; 27 Liu, Tian, Hao, Yang, Geng, Zhang (bib70) 2019; 30 Athirasala, Tahayeri, Thrivikraman, Franca, Monteiro, Tran (bib87) 2018; 10 Ganguli, Pagan-Diaz, Grant, Cvetkovic, Bramlet, Vozenilek (bib63) 2018; 20 Garcia-Mato, Ochandiano, Garcia-Sevilla, Navarro-Cuellar, Darriba-Alles, Garcia-Leal (bib64) 2019; 9 Kazimierczak, Benko, Nocun, Przekora (bib68) 2019; 14 Jaber, Kovacs (bib40) 2019; 6 Roskies, Jordan, Fang, Abdallah, Hier, Mlynarek (bib41) 2016; 31 Song, Lin, He, Wang, Zhang, Li (bib18) 2018; 13 Uz, Donta, Mededovic, Sakaguchi, Mallapragada (bib90) 2019; 58 Distler, Fournier, Grunewald, Polley, Seitz, Detsch (bib24) 2020; 8 Han, Li, Zhang, Han, Chang, Ding (bib4) 2019; 8 Major, Kowalczyk, Surmiak, Lojszczyk, Podgorski, Trzaskowska (bib66) 2020; 193 Erickson, Newsom, Fletcher, Feuer, Yu, RRodriguez-Fontan (bib69) 2020; 108 Bose, Vahabzadeh, Bandyopadhyay (bib1) 2013; 16 Raisian, Fallahi, Khiabani, Heidarizadeh, Azdoo (bib15) 2017; 12 Stogerer, Baumgartner, Hochwallner, Stampfl (bib50) 2020; 13 Bidgoli, Alemzadeh, Tamjid, Khafaji, Vossoughi (bib59) 2019; 103 Elhaj, Irgum (bib11) 2014; 6 Kolan, Leu, Hilmas, Brown, Velez (bib45) 2011; 3 Ouyang, Yao, Zhao, Sun (bib35) 2016; 8 Turner, Strong, Gold (bib21) 2014; 20 Gao, Xu, Liang, Li, Peng, Wu (bib53) 2019; 6 Ganbold, Heo, Koak, Kim, Cho (bib76) 2019; 12 Van Hoorick, Declercq, De Muynck, Houben, Van Hoorebeke, Cornelissen (bib58) 2015; 26 Fedore, Tse, Nam, Barton, Hatch (bib30) 2017; 20 Kim, Hwangbo, Koo, Kim (bib73) 2020; 21 Rubi-Sans, Recha-Sancho, Perez-Amodio, Mateos-Timoneda, Semino, Engel (bib78) 2019; 10 Mohamed, Masood, Bhowmik (bib22) 2015; 3 Lee, Hong, Kim, Kim (bib72) 2020; 250 Chen, Fang, Shie, Shen (bib52) 2019; 5 Takahashi, Yamanaka (bib5) 2006; 126 Geven, Grijpma (bib26) 2019; 2 Kanno, Nakatsuka, Saijo, Fujihara, Atsuhiko, Chung (bib60) 2016; 5 Choi, Park (bib37) 2018; 106 Yap, Chua, Dong, Liu, Zhang, Loh (bib46) 2015; 2 Choe, Oh, Seok, Park, Lee (bib83) 2019; 11 Chlebanowska, Tejchman, Sulkowski, Skrzypek, Majka (bib8) 2020; 21 Marro, Bandukwala, Mak (bib19) 2016; 45 Zeng, Pathak, Shi, Ran, Liang, Yan (bib44) 2020; 12 Luo, Li, Qin, Wa (bib86) 2018; 146 Ji, Dube, Chesterman, Fung, Liaw, Kohn (bib85) 2019; 7 Li (10.1016/j.reth.2021.01.007_bib82) 2020; 8 Chen (10.1016/j.reth.2021.01.007_bib52) 2019; 5 Lee (10.1016/j.reth.2021.01.007_bib72) 2020; 250 Van Hoorick (10.1016/j.reth.2021.01.007_bib58) 2015; 26 Chen (10.1016/j.reth.2021.01.007_bib7) 2020; 15 Distler (10.1016/j.reth.2021.01.007_bib24) 2020; 8 Jaber (10.1016/j.reth.2021.01.007_bib40) 2019; 6 Zeng (10.1016/j.reth.2021.01.007_bib44) 2020; 12 Gremare (10.1016/j.reth.2021.01.007_bib23) 2018; 106 Tsujimoto (10.1016/j.reth.2021.01.007_bib6) 2020; 31 Kolan (10.1016/j.reth.2021.01.007_bib45) 2011; 3 Degli Esposti (10.1016/j.reth.2021.01.007_bib14) 2019; 100 Fu (10.1016/j.reth.2021.01.007_bib75) 2019; 14 Moncal (10.1016/j.reth.2021.01.007_bib84) 2019; 105 Young (10.1016/j.reth.2021.01.007_bib61) 2019; 12 Carvalho (10.1016/j.reth.2021.01.007_bib67) 2019; 99 Marro (10.1016/j.reth.2021.01.007_bib19) 2016; 45 Xiao (10.1016/j.reth.2021.01.007_bib42) 2008; 222 Yap (10.1016/j.reth.2021.01.007_bib46) 2015; 2 Ganbold (10.1016/j.reth.2021.01.007_bib76) 2019; 12 Yan (10.1016/j.reth.2021.01.007_bib39) 2009; 14 Nakamatsu (10.1016/j.reth.2021.01.007_bib12) 2006; 7 Ji (10.1016/j.reth.2021.01.007_bib85) 2019; 7 Prasopthum (10.1016/j.reth.2021.01.007_bib13) 2018; 10 Bhargav (10.1016/j.reth.2021.01.007_bib51) 2020; 108 Kim (10.1016/j.reth.2021.01.007_bib73) 2020; 21 Zhang (10.1016/j.reth.2021.01.007_bib54) 2020; 30 Hamid (10.1016/j.reth.2021.01.007_bib29) 2011; 3 McMenamin (10.1016/j.reth.2021.01.007_bib62) 2020 Ganguli (10.1016/j.reth.2021.01.007_bib63) 2018; 20 Rubi-Sans (10.1016/j.reth.2021.01.007_bib78) 2019; 10 Landers (10.1016/j.reth.2021.01.007_bib32) 2000; 282 Stogerer (10.1016/j.reth.2021.01.007_bib50) 2020; 13 Erickson (10.1016/j.reth.2021.01.007_bib69) 2020; 108 Chaji (10.1016/j.reth.2021.01.007_bib77) 2020; 6 Tao (10.1016/j.reth.2021.01.007_bib65) 2019; 10 Garcia-Mato (10.1016/j.reth.2021.01.007_bib64) 2019; 9 Han (10.1016/j.reth.2021.01.007_bib4) 2019; 8 Uz (10.1016/j.reth.2021.01.007_bib90) 2019; 58 Elhaj (10.1016/j.reth.2021.01.007_bib11) 2014; 6 Ouyang (10.1016/j.reth.2021.01.007_bib35) 2016; 8 Lee (10.1016/j.reth.2021.01.007_bib38) 2020; 111 Cader (10.1016/j.reth.2021.01.007_bib48) 2019; 564 Turner (10.1016/j.reth.2021.01.007_bib21) 2014; 20 Song (10.1016/j.reth.2021.01.007_bib18) 2018; 13 Roskies (10.1016/j.reth.2021.01.007_bib41) 2016; 31 Prasopthum (10.1016/j.reth.2021.01.007_bib80) 2019; 11 Xu (10.1016/j.reth.2021.01.007_bib31) 2010; 2 Nowicki (10.1016/j.reth.2021.01.007_bib55) 2020; 17 Guillaume (10.1016/j.reth.2021.01.007_bib36) 2017; 54 Rajaram (10.1016/j.reth.2021.01.007_bib34) 2014; 1 Tian (10.1016/j.reth.2021.01.007_bib25) 2020; 10 Fedore (10.1016/j.reth.2021.01.007_bib30) 2017; 20 Wang (10.1016/j.reth.2021.01.007_bib27) 2004; 10 Major (10.1016/j.reth.2021.01.007_bib66) 2020; 193 Bose (10.1016/j.reth.2021.01.007_bib1) 2013; 16 Bidgoli (10.1016/j.reth.2021.01.007_bib59) 2019; 103 Takahashi (10.1016/j.reth.2021.01.007_bib5) 2006; 126 Van Damme (10.1016/j.reth.2021.01.007_bib56) 2020; 5 Luo (10.1016/j.reth.2021.01.007_bib86) 2018; 146 Zhou (10.1016/j.reth.2021.01.007_bib74) 2019; 13 Do (10.1016/j.reth.2021.01.007_bib10) 2015; 4 Samsonraj (10.1016/j.reth.2021.01.007_bib3) 2017; 6 Bollman (10.1016/j.reth.2021.01.007_bib88) 2020; 1463 Goodridge (10.1016/j.reth.2021.01.007_bib43) 2006; 220 Whiting (10.1016/j.reth.2021.01.007_bib2) 2015; 370 Billiet (10.1016/j.reth.2021.01.007_bib33) 2012; 33 Cheng (10.1016/j.reth.2021.01.007_bib47) 2020; 12 Choe (10.1016/j.reth.2021.01.007_bib83) 2019; 11 Gao (10.1016/j.reth.2021.01.007_bib53) 2019; 6 Zou (10.1016/j.reth.2021.01.007_bib81) 2020; 18 Yamanaka (10.1016/j.reth.2021.01.007_bib9) 2020; 27 Turnbull (10.1016/j.reth.2021.01.007_bib20) 2018; 3 Bellini (10.1016/j.reth.2021.01.007_bib28) 2002 Fahimipour (10.1016/j.reth.2021.01.007_bib89) 2019; 35 Athirasala (10.1016/j.reth.2021.01.007_bib87) 2018; 10 Chi (10.1016/j.reth.2021.01.007_bib71) 2020; 15 Vermeulen (10.1016/j.reth.2021.01.007_bib79) 2017; 43 Raisian (10.1016/j.reth.2021.01.007_bib15) 2017; 12 Geven (10.1016/j.reth.2021.01.007_bib26) 2019; 2 Kazimierczak (10.1016/j.reth.2021.01.007_bib68) 2019; 14 Aliabouzar (10.1016/j.reth.2021.01.007_bib17) 2018; 115 Choi (10.1016/j.reth.2021.01.007_bib37) 2018; 106 Mostafaei (10.1016/j.reth.2021.01.007_bib49) 2019; 102 Kanno (10.1016/j.reth.2021.01.007_bib60) 2016; 5 Mohamed (10.1016/j.reth.2021.01.007_bib22) 2015; 3 Liu (10.1016/j.reth.2021.01.007_bib70) 2019; 30 Chlebanowska (10.1016/j.reth.2021.01.007_bib8) 2020; 21 Simoneti (10.1016/j.reth.2021.01.007_bib16) 2020 De Maria (10.1016/j.reth.2021.01.007_bib57) 2015 |
References_xml | – volume: 126 start-page: 663 year: 2006 end-page: 676 ident: bib5 article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors publication-title: Cell – volume: 6 start-page: 15653 year: 2014 end-page: 15666 ident: bib11 article-title: Monolithic space-filling porous materials from engineering plastics by thermally induced phase separation publication-title: ACS Appl Mater Interfaces – volume: 12 start-page: 25032 year: 2020 ident: bib44 article-title: Indirect selective laser sintering-printed microporous biphasic calcium phosphate scaffold promotes endogenous bone regeneration via activation of ERK1/2 signaling publication-title: Biofabrication – volume: 6 start-page: 1900867 year: 2019 ident: bib53 article-title: Osteochondral regeneration with 3D-printed biodegradable high-strength supramolecular polymer reinforced-gelatin hydrogel scaffolds publication-title: Adv Sci – volume: 20 start-page: 12 year: 2017 end-page: 17 ident: bib30 article-title: Analysis of polycaprolactone scaffolds fabricated via precision extrusion deposition for control of craniofacial tissue mineralization publication-title: Orthod Craniofac Res – volume: 5 start-page: 855 year: 2020 end-page: 864 ident: bib56 article-title: Indirect versus direct 3D printing of hydrogel scaffolds for adipose tissue regeneration publication-title: MRS Adv – volume: 370 start-page: 20140375 year: 2015 ident: bib2 article-title: Progressing a human embryonic stem-cell-based regenerative medicine therapy towards the clinic publication-title: Philos Trans R Soc Lond B Biol Sci – volume: 10 start-page: 25002 year: 2018 ident: bib13 article-title: Direct three-dimensional printing of polymeric scaffolds with nanofibrous topography publication-title: Biofabrication – volume: 33 start-page: 6020 year: 2012 end-page: 6041 ident: bib33 article-title: A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering publication-title: Biomaterials – volume: 27 start-page: 523 year: 2020 end-page: 531 ident: bib9 article-title: Pluripotent stem cell-based cell therapy-promise and challenges publication-title: Cell Stem Cell – volume: 115 start-page: 495 year: 2018 end-page: 506 ident: bib17 article-title: Effects of scaffold microstructure and low intensity pulsed ultrasound on chondrogenic differentiation of human mesenchymal stem cells publication-title: Biotechnol Bioeng – volume: 106 start-page: 887 year: 2018 end-page: 894 ident: bib23 article-title: Characterization of printed PLA scaffolds for bone tissue engineering publication-title: J Biomed Mater Res – volume: 111 start-page: 110844 year: 2020 ident: bib38 article-title: Integrating cold atmospheric plasma with 3D printed bioactive nanocomposite scaffold for cartilage regeneration publication-title: Mater Sci Eng C Mater Biol Appl – volume: 15 start-page: 5825 year: 2020 end-page: 5838 ident: bib71 article-title: 3D-HA scaffold functionalized by extracellular matrix of stem cells promotes bone repair publication-title: Int J Nanomed – volume: 3 start-page: 34109 year: 2011 ident: bib29 article-title: Fabrication of three-dimensional scaffolds using precision extrusion deposition with an assisted cooling device publication-title: Biofabrication – volume: 2 start-page: 25002 year: 2010 ident: bib31 article-title: Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering publication-title: Biofabrication – volume: 102 start-page: 276 year: 2019 end-page: 288 ident: bib49 article-title: Microstructural evolution and resulting properties of differently sintered and heat-treated binder-jet 3D-printed Stellite 6 publication-title: Mater Sci Eng C – volume: 103 start-page: 109688 year: 2019 ident: bib59 article-title: Fabrication of hierarchically porous silk fibroin-bioactive glass composite scaffold via indirect 3D printing: effect of particle size on physico-mechanical properties and in vitro cellular behavior publication-title: Mater Sci Eng C Mater Biol Appl – volume: 146 start-page: 12 year: 2018 end-page: 19 ident: bib86 article-title: 3D printing of concentrated alginate/gelatin scaffolds with homogeneous nano apatite coating for bone tissue engineering publication-title: Mater Des – volume: 11 start-page: 18896 year: 2019 end-page: 18906 ident: bib80 article-title: 3D printed scaffolds with controlled micro-/nano-porous surface topography direct chondrogenic and osteogenic differentiation of mesenchymal stem cells publication-title: ACS Appl Mater Interfaces – volume: 43 start-page: 618 year: 2017 end-page: 624 ident: bib79 article-title: 3D bioprint me: a socioethical view of bioprinting human organs and tissues publication-title: J Med Ethics – volume: 8 start-page: 552 year: 2020 ident: bib24 article-title: Polymer-bioactive glass composite filaments for 3D scaffold manufacturing by fused deposition modeling: fabrication and characterization publication-title: Front Bioeng Biotechnol – volume: 15 start-page: 1081 year: 2020 end-page: 1094 ident: bib7 article-title: Pluripotent stem cells for neurodegenerative disease modeling: an expert view on their value to drug discovery publication-title: Expet Opin Drug Discov – volume: 31 start-page: 107476 year: 2020 ident: bib6 article-title: A modular differentiation system maps multiple human kidney lineages from pluripotent stem cells publication-title: Cell Rep – volume: 282 start-page: 17 year: 2000 end-page: 21 ident: bib32 article-title: Desktop manufacturing of complex objects, prototypes and biomedical scaffolds by means of computer-assisted design combined with computer-guided 3D plotting of polymers and reactive oligomers publication-title: Macromol Mater Eng – volume: 14 start-page: 6615 year: 2019 end-page: 6630 ident: bib68 article-title: Novel chitosan/agarose/hydroxyapatite nanocomposite scaffold for bone tissue engineering applications: comprehensive evaluation of biocompatibility and osteoinductivity with the use of osteoblasts and mesenchymal stem cells publication-title: Int J Nanomed – volume: 564 start-page: 359 year: 2019 end-page: 368 ident: bib48 article-title: Water-based 3D inkjet printing of an oral pharmaceutical dosage form publication-title: Int J Pharm – volume: 108 start-page: 2484 year: 2020 end-page: 2494 ident: bib69 article-title: In vivo degradation rate of alginate-chitosan hydrogels influences tissue repair following physeal injury publication-title: J Biomed Mater Res B Appl Biomater – volume: 10 start-page: 4805 year: 2020 end-page: 4816 ident: bib25 article-title: Study on antibacterial properties and cytocompatibility of EPL coated 3D printed PCL/HA composite scaffolds publication-title: RSC Adv – volume: 3 start-page: 42 year: 2015 end-page: 53 ident: bib22 article-title: Optimization of fused deposition modeling process parameters: a review of current research and future prospects publication-title: Adv Manuf – volume: 105 start-page: 110128 year: 2019 ident: bib84 article-title: Collagen-infilled 3D printed scaffolds loaded with miR-148b-transfected bone marrow stem cells improve calvarial bone regeneration in rats publication-title: Mater Sci Eng C Mater Biol Appl – volume: 21 year: 2020 ident: bib8 article-title: Use of 3D organoids as a model to study idiopathic form of Parkinson’s disease publication-title: Int J Mol Sci – volume: 9 start-page: 17691 year: 2019 ident: bib64 article-title: Craniosynostosis surgery: workflow based on virtual surgical planning, intraoperative navigation and 3D printed patient-specific guides and templates publication-title: Sci Rep – volume: 100 start-page: 286 year: 2019 end-page: 296 ident: bib14 article-title: Highly porous PHB-based bioactive scaffolds for bone tissue engineering by in situ synthesis of hydroxyapatite publication-title: Mater Sci Eng C Mater Biol Appl – volume: 5 start-page: 1 year: 2016 end-page: 8 ident: bib60 article-title: Computed tomographic evaluation of novel custom-made artificial bones, “CT-bone”, applied for maxillofacial reconstruction publication-title: Regen Ther – volume: 11 start-page: 23275 year: 2019 end-page: 23285 ident: bib83 article-title: Graphene oxide/alginate composites as novel bioinks for three-dimensional mesenchymal stem cell printing and bone regeneration applications publication-title: Nanoscale – volume: 1463 start-page: 37 year: 2020 end-page: 44 ident: bib88 article-title: Improvement of osseointegration by recruiting stem cells to titanium implants fabricated with 3D printing publication-title: Ann N Y Acad Sci – volume: 250 start-page: 116914 year: 2020 ident: bib72 article-title: Bone-derived dECM/alginate bioink for fabricating a 3D cell-laden mesh structure for bone tissue engineering publication-title: Carbohydr Polym – volume: 13 start-page: 9595 year: 2019 end-page: 9606 ident: bib74 article-title: Hierarchically porous hydroxyapatite hybrid scaffold incorporated with reduced graphene oxide for rapid bone ingrowth and repair publication-title: ACS Nano – volume: 7 start-page: 3345 year: 2006 end-page: 3355 ident: bib12 article-title: Processing and characterization of porous structures from chitosan and starch for tissue engineering scaffolds publication-title: Biomacromolecules – year: 2002 ident: bib28 article-title: Fused deposition of ceramics- A comprehensive experimental, analytical and computational study of material behavior, fabrication process and equipment design – volume: 18 start-page: 39 year: 2020 ident: bib81 article-title: Preparation of antibacterial and osteoconductive 3D-printed PLGA/Cu(I)@ZIF-8 nanocomposite scaffolds for infected bone repair publication-title: J Nanobiotechnol – volume: 6 year: 2020 ident: bib77 article-title: Bioprinted three-dimensional cell-laden Hydrogels to evaluate adipocyte-breast cancer cell interactions publication-title: Gels – volume: 10 start-page: 42 year: 2004 end-page: 49 ident: bib27 article-title: Precision extruding deposition and characterization of cellular poly-ε-caprolactone tissue scaffolds publication-title: Rapid Prototyp J – volume: 30 year: 2020 ident: bib54 article-title: Direct 3D printed biomimetic scaffolds based on hydrogel microparticles for cell spheroid growth publication-title: Adv Funct Mater – volume: 20 start-page: 192 year: 2014 end-page: 204 ident: bib21 article-title: A review of melt extrusion additive manufacturing processes: I. Process design and modeling publication-title: Rapid Prototyping Journal – volume: 99 start-page: 479 year: 2019 end-page: 490 ident: bib67 article-title: Co-culture cell-derived extracellular matrix loaded electrospun microfibrous scaffolds for bone tissue engineering publication-title: Mater Sci Eng C Mater Biol Appl – volume: 8 start-page: 35020 year: 2016 ident: bib35 article-title: Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells publication-title: Biofabrication – volume: 31 start-page: 132 year: 2016 end-page: 139 ident: bib41 article-title: Improving PEEK bioactivity for craniofacial reconstruction using a 3D printed scaffold embedded with mesenchymal stem cells publication-title: J Biomater Appl – volume: 45 start-page: 2 year: 2016 end-page: 9 ident: bib19 article-title: Three-dimensional printing and medical imaging: a review of the methods and applications publication-title: Curr Probl Diagn Radiol – volume: 10 year: 2019 ident: bib78 article-title: Development of a three-dimensional bioengineered platform for articular cartilage regeneration publication-title: Biomolecules – volume: 8 start-page: 824 year: 2020 ident: bib82 article-title: 3D printing of cytocompatible graphene/alginate scaffolds for mimetic tissue constructs publication-title: Front Bioeng Biotechnol – volume: 58 start-page: 7421 year: 2019 end-page: 7427 ident: bib90 article-title: Development of gelatin and graphene-based nerve regeneration conduits using three-dimensional (3D) printing strategies for electrical transdifferentiation of mesenchymal stem cells publication-title: Ind Eng Chem Res – volume: 1 start-page: 194 year: 2014 end-page: 203 ident: bib34 article-title: Bioplotting alginate/hyaluronic acid hydrogel scaffolds with structural integrity and preserved schwann cell viability publication-title: 3D Print Addit Manuf – volume: 13 start-page: 505 year: 2018 end-page: 523 ident: bib18 article-title: Nano-biphasic calcium phosphate/polyvinyl alcohol composites with enhanced bioactivity for bone repair via low-temperature three-dimensional printing and loading with platelet-rich fibrin publication-title: Int J Nanomed – volume: 12 year: 2019 ident: bib76 article-title: Human stem cell responses and surface characteristics of 3D printing Co-Cr dental material publication-title: Materials – volume: 6 start-page: 2173 year: 2017 end-page: 2185 ident: bib3 article-title: Concise review: multifaceted characterization of human mesenchymal stem cells for use in regenerative medicine publication-title: Stem Cells Transl Med – volume: 12 start-page: 154 year: 2017 end-page: 158 ident: bib15 article-title: Customized titanium mesh based on the 3D printed model vs. Manual intraoperative bending of titanium mesh for reconstructing of orbital bone fracture: a randomized clinical trial publication-title: Rev Recent Clin Trials – volume: 220 start-page: 57 year: 2006 end-page: 68 ident: bib43 article-title: Indirect selective laser sintering of an apatite-mullite glass-ceramic for potential use in bone replacement applications publication-title: Proc Inst Mech Eng H – start-page: 153 year: 2015 end-page: 164 ident: bib57 article-title: Indirect rapid prototyping for tissue engineering publication-title: Essentials of 3D biofabrication and translation – volume: 16 start-page: 496 year: 2013 end-page: 504 ident: bib1 article-title: Bone tissue engineering using 3D printing publication-title: Mater Today – start-page: 1 year: 2020 end-page: 9 ident: bib62 article-title: The reproduction of human pathology specimens using three-dimensional (3D) printing technology for teaching purposes publication-title: Med Teach – volume: 12 start-page: 90 year: 2019 end-page: 96 ident: bib61 article-title: Three-dimensional printing of archived human fetal material for teaching purposes publication-title: Anat Sci Educ – volume: 108 start-page: 629 year: 2020 end-page: 637 ident: bib51 article-title: Taguchi’s methods to optimize the properties and bioactivity of 3D printed polycaprolactone/mineral trioxide aggregate scaffold: theoretical predictions and experimental validation publication-title: J Biomed Mater Res B Appl Biomater – volume: 4 start-page: 1742 year: 2015 end-page: 1762 ident: bib10 article-title: 3D printing of scaffolds for tissue regeneration applications publication-title: Adv Healthc Mater – volume: 20 start-page: 65 year: 2018 ident: bib63 article-title: 3D printing for preoperative planning and surgical training: a review publication-title: Biomed Microdevices – year: 2020 ident: bib16 article-title: Comparison of material properties and biofilm formation in interim single crowns obtained by 3D printing and conventional methods publication-title: J Prosthet Dent – volume: 21 year: 2020 ident: bib73 article-title: Fabrication of mechanically reinforced gelatin/hydroxyapatite bio-composite scaffolds by core/shell nozzle printing for bone tissue engineering publication-title: Int J Mol Sci – volume: 14 start-page: 1 year: 2009 end-page: 12 ident: bib39 article-title: Rapid prototyping and manufacturing technology: principle, representative technics, applications, and development trends publication-title: Tsinghua Sci Technol – volume: 7 start-page: 560 year: 2019 end-page: 570 ident: bib85 article-title: Polyester-based ink platform with tunable bioactivity for 3D printing of tissue engineering scaffolds publication-title: Biomater Sci – volume: 30 start-page: 53 year: 2019 ident: bib70 article-title: Biomimetic poly(glycerol sebacate)/polycaprolactone blend scaffolds for cartilage tissue engineering publication-title: J Mater Sci Mater Med – volume: 8 year: 2019 ident: bib4 article-title: Mesenchymal stem cells for regenerative medicine publication-title: Cells – volume: 2 year: 2015 ident: bib46 article-title: Review of selective laser melting: materials and applications publication-title: Appl Phys Rev – volume: 10 year: 2019 ident: bib65 article-title: The applications of 3D printing for craniofacial tissue engineering publication-title: Micromachines – volume: 193 start-page: 111056 year: 2020 ident: bib66 article-title: Patient specific implants for jawbone reconstruction after tumor resection publication-title: Colloids Surf B Biointerfaces – volume: 35 start-page: 990 year: 2019 end-page: 1006 ident: bib89 article-title: Enhancing cell seeding and osteogenesis of MSCs on 3D printed scaffolds through injectable BMP2 immobilized ECM-Mimetic gel publication-title: Dent Mater – volume: 13 year: 2020 ident: bib50 article-title: Bio-Inspired toughening of composites in 3D-printing publication-title: Materials – volume: 5 start-page: 197 year: 2019 ident: bib52 article-title: The mussel-inspired assisted apatite mineralized on PolyJet material for artificial bone scaffold publication-title: Int J Bioprint – volume: 2 year: 2019 ident: bib26 article-title: Additive manufacturing of composite structures for the restoration of bone tissue publication-title: Multifunctional Materials – volume: 3 start-page: 25004 year: 2011 ident: bib45 article-title: Fabrication of 13-93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering publication-title: Biofabrication – volume: 10 start-page: 24101 year: 2018 ident: bib87 article-title: A dentin-derived hydrogel bioink for 3D bioprinting of cell laden scaffolds for regenerative dentistry publication-title: Biofabrication – volume: 3 start-page: 278 year: 2018 end-page: 314 ident: bib20 article-title: 3D bioactive composite scaffolds for bone tissue engineering publication-title: Bioact Mater – volume: 12 year: 2020 ident: bib47 article-title: Preparation and characterization of color photocurable resins for full-color material jetting additive manufacturing publication-title: Polymers – volume: 17 year: 2020 ident: bib55 article-title: 3D printing multiphasic osteochondral tissue constructs with nano to micro features via PCL based bioink publication-title: Bioprinting – volume: 26 start-page: 247 year: 2015 ident: bib58 article-title: Indirect additive manufacturing as an elegant tool for the production of self-supporting low density gelatin scaffolds publication-title: J Mater Sci Mater Med – volume: 6 year: 2019 ident: bib40 article-title: Selective laser melting of Ti alloys and hydroxyapatite for tissue engineering: progress and challenges publication-title: Mater Res Express – volume: 222 start-page: 1107 year: 2008 end-page: 1114 ident: bib42 article-title: Indirect selective laser sintering of apatite-wollostonite glass-ceramic publication-title: Proc Inst Mech Eng H – volume: 54 start-page: 386 year: 2017 end-page: 398 ident: bib36 article-title: Surface-enrichment with hydroxyapatite nanoparticles in stereolithography-fabricated composite polymer scaffolds promotes bone repair publication-title: Acta Biomater – volume: 106 start-page: 3009 year: 2018 end-page: 3020 ident: bib37 article-title: Multifunctional effects of a modification of SLA titanium implant surface with strontium-containing nanostructures on immunoinflammatory and osteogenic cell function publication-title: J Biomed Mater Res – volume: 14 year: 2019 ident: bib75 article-title: 3D printing of layered mesoporous bioactive glass:sodium alginate-sodium alginate scaffolds with controllable dual-drug release behaviors publication-title: Biomed Mater – volume: 20 start-page: 65 issue: 3 year: 2018 ident: 10.1016/j.reth.2021.01.007_bib63 article-title: 3D printing for preoperative planning and surgical training: a review publication-title: Biomed Microdevices doi: 10.1007/s10544-018-0301-9 – volume: 14 start-page: 6615 year: 2019 ident: 10.1016/j.reth.2021.01.007_bib68 article-title: Novel chitosan/agarose/hydroxyapatite nanocomposite scaffold for bone tissue engineering applications: comprehensive evaluation of biocompatibility and osteoinductivity with the use of osteoblasts and mesenchymal stem cells publication-title: Int J Nanomed doi: 10.2147/IJN.S217245 – volume: 3 start-page: 34109 issue: 3 year: 2011 ident: 10.1016/j.reth.2021.01.007_bib29 article-title: Fabrication of three-dimensional scaffolds using precision extrusion deposition with an assisted cooling device publication-title: Biofabrication doi: 10.1088/1758-5082/3/3/034109 – volume: 6 issue: 8 year: 2019 ident: 10.1016/j.reth.2021.01.007_bib40 article-title: Selective laser melting of Ti alloys and hydroxyapatite for tissue engineering: progress and challenges publication-title: Mater Res Express doi: 10.1088/2053-1591/ab1dee – volume: 3 start-page: 42 issue: 1 year: 2015 ident: 10.1016/j.reth.2021.01.007_bib22 article-title: Optimization of fused deposition modeling process parameters: a review of current research and future prospects publication-title: Adv Manuf doi: 10.1007/s40436-014-0097-7 – volume: 5 start-page: 197 issue: 2 year: 2019 ident: 10.1016/j.reth.2021.01.007_bib52 article-title: The mussel-inspired assisted apatite mineralized on PolyJet material for artificial bone scaffold publication-title: Int J Bioprint doi: 10.18063/ijb.v5i2.197 – volume: 2 issue: 2 year: 2019 ident: 10.1016/j.reth.2021.01.007_bib26 article-title: Additive manufacturing of composite structures for the restoration of bone tissue publication-title: Multifunctional Materials doi: 10.1088/2399-7532/ab201f – volume: 33 start-page: 6020 issue: 26 year: 2012 ident: 10.1016/j.reth.2021.01.007_bib33 article-title: A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.04.050 – volume: 6 start-page: 1900867 issue: 15 year: 2019 ident: 10.1016/j.reth.2021.01.007_bib53 article-title: Osteochondral regeneration with 3D-printed biodegradable high-strength supramolecular polymer reinforced-gelatin hydrogel scaffolds publication-title: Adv Sci doi: 10.1002/advs.201900867 – volume: 105 start-page: 110128 year: 2019 ident: 10.1016/j.reth.2021.01.007_bib84 article-title: Collagen-infilled 3D printed scaffolds loaded with miR-148b-transfected bone marrow stem cells improve calvarial bone regeneration in rats publication-title: Mater Sci Eng C Mater Biol Appl doi: 10.1016/j.msec.2019.110128 – volume: 106 start-page: 887 issue: 4 year: 2018 ident: 10.1016/j.reth.2021.01.007_bib23 article-title: Characterization of printed PLA scaffolds for bone tissue engineering publication-title: J Biomed Mater Res doi: 10.1002/jbm.a.36289 – volume: 12 start-page: 90 issue: 1 year: 2019 ident: 10.1016/j.reth.2021.01.007_bib61 article-title: Three-dimensional printing of archived human fetal material for teaching purposes publication-title: Anat Sci Educ doi: 10.1002/ase.1805 – year: 2020 ident: 10.1016/j.reth.2021.01.007_bib16 article-title: Comparison of material properties and biofilm formation in interim single crowns obtained by 3D printing and conventional methods publication-title: J Prosthet Dent doi: 10.1016/j.prosdent.2020.06.026 – volume: 6 issue: 1 year: 2020 ident: 10.1016/j.reth.2021.01.007_bib77 article-title: Bioprinted three-dimensional cell-laden Hydrogels to evaluate adipocyte-breast cancer cell interactions publication-title: Gels doi: 10.3390/gels6010010 – volume: 10 issue: 1 year: 2019 ident: 10.1016/j.reth.2021.01.007_bib78 article-title: Development of a three-dimensional bioengineered platform for articular cartilage regeneration publication-title: Biomolecules doi: 10.3390/biom10010052 – volume: 8 start-page: 35020 issue: 3 year: 2016 ident: 10.1016/j.reth.2021.01.007_bib35 article-title: Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells publication-title: Biofabrication doi: 10.1088/1758-5090/8/3/035020 – volume: 7 start-page: 560 issue: 2 year: 2019 ident: 10.1016/j.reth.2021.01.007_bib85 article-title: Polyester-based ink platform with tunable bioactivity for 3D printing of tissue engineering scaffolds publication-title: Biomater Sci doi: 10.1039/C8BM01269E – volume: 8 issue: 8 year: 2019 ident: 10.1016/j.reth.2021.01.007_bib4 article-title: Mesenchymal stem cells for regenerative medicine publication-title: Cells doi: 10.3390/cells8080886 – volume: 10 start-page: 4805 issue: 8 year: 2020 ident: 10.1016/j.reth.2021.01.007_bib25 article-title: Study on antibacterial properties and cytocompatibility of EPL coated 3D printed PCL/HA composite scaffolds publication-title: RSC Adv doi: 10.1039/C9RA10275B – volume: 27 start-page: 523 issue: 4 year: 2020 ident: 10.1016/j.reth.2021.01.007_bib9 article-title: Pluripotent stem cell-based cell therapy-promise and challenges publication-title: Cell Stem Cell doi: 10.1016/j.stem.2020.09.014 – volume: 45 start-page: 2 issue: 1 year: 2016 ident: 10.1016/j.reth.2021.01.007_bib19 article-title: Three-dimensional printing and medical imaging: a review of the methods and applications publication-title: Curr Probl Diagn Radiol doi: 10.1067/j.cpradiol.2015.07.009 – volume: 4 start-page: 1742 issue: 12 year: 2015 ident: 10.1016/j.reth.2021.01.007_bib10 article-title: 3D printing of scaffolds for tissue regeneration applications publication-title: Adv Healthc Mater doi: 10.1002/adhm.201500168 – volume: 3 start-page: 278 issue: 3 year: 2018 ident: 10.1016/j.reth.2021.01.007_bib20 article-title: 3D bioactive composite scaffolds for bone tissue engineering publication-title: Bioact Mater doi: 10.1016/j.bioactmat.2017.10.001 – volume: 1 start-page: 194 issue: 4 year: 2014 ident: 10.1016/j.reth.2021.01.007_bib34 article-title: Bioplotting alginate/hyaluronic acid hydrogel scaffolds with structural integrity and preserved schwann cell viability publication-title: 3D Print Addit Manuf doi: 10.1089/3dp.2014.0006 – volume: 193 start-page: 111056 year: 2020 ident: 10.1016/j.reth.2021.01.007_bib66 article-title: Patient specific implants for jawbone reconstruction after tumor resection publication-title: Colloids Surf B Biointerfaces doi: 10.1016/j.colsurfb.2020.111056 – volume: 13 issue: 21 year: 2020 ident: 10.1016/j.reth.2021.01.007_bib50 article-title: Bio-Inspired toughening of composites in 3D-printing publication-title: Materials doi: 10.3390/ma13214714 – volume: 106 start-page: 3009 issue: 12 year: 2018 ident: 10.1016/j.reth.2021.01.007_bib37 article-title: Multifunctional effects of a modification of SLA titanium implant surface with strontium-containing nanostructures on immunoinflammatory and osteogenic cell function publication-title: J Biomed Mater Res doi: 10.1002/jbm.a.36490 – volume: 30 start-page: 53 issue: 5 year: 2019 ident: 10.1016/j.reth.2021.01.007_bib70 article-title: Biomimetic poly(glycerol sebacate)/polycaprolactone blend scaffolds for cartilage tissue engineering publication-title: J Mater Sci Mater Med doi: 10.1007/s10856-019-6257-3 – volume: 126 start-page: 663 issue: 4 year: 2006 ident: 10.1016/j.reth.2021.01.007_bib5 article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors publication-title: Cell doi: 10.1016/j.cell.2006.07.024 – volume: 3 start-page: 25004 issue: 2 year: 2011 ident: 10.1016/j.reth.2021.01.007_bib45 article-title: Fabrication of 13-93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering publication-title: Biofabrication doi: 10.1088/1758-5082/3/2/025004 – volume: 15 start-page: 5825 year: 2020 ident: 10.1016/j.reth.2021.01.007_bib71 article-title: 3D-HA scaffold functionalized by extracellular matrix of stem cells promotes bone repair publication-title: Int J Nanomed doi: 10.2147/IJN.S259678 – volume: 108 start-page: 629 issue: 3 year: 2020 ident: 10.1016/j.reth.2021.01.007_bib51 article-title: Taguchi’s methods to optimize the properties and bioactivity of 3D printed polycaprolactone/mineral trioxide aggregate scaffold: theoretical predictions and experimental validation publication-title: J Biomed Mater Res B Appl Biomater doi: 10.1002/jbm.b.34417 – volume: 35 start-page: 990 issue: 7 year: 2019 ident: 10.1016/j.reth.2021.01.007_bib89 article-title: Enhancing cell seeding and osteogenesis of MSCs on 3D printed scaffolds through injectable BMP2 immobilized ECM-Mimetic gel publication-title: Dent Mater doi: 10.1016/j.dental.2019.04.004 – volume: 21 issue: 9 year: 2020 ident: 10.1016/j.reth.2021.01.007_bib73 article-title: Fabrication of mechanically reinforced gelatin/hydroxyapatite bio-composite scaffolds by core/shell nozzle printing for bone tissue engineering publication-title: Int J Mol Sci doi: 10.3390/ijms21093401 – volume: 102 start-page: 276 year: 2019 ident: 10.1016/j.reth.2021.01.007_bib49 article-title: Microstructural evolution and resulting properties of differently sintered and heat-treated binder-jet 3D-printed Stellite 6 publication-title: Mater Sci Eng C doi: 10.1016/j.msec.2019.04.011 – volume: 17 year: 2020 ident: 10.1016/j.reth.2021.01.007_bib55 article-title: 3D printing multiphasic osteochondral tissue constructs with nano to micro features via PCL based bioink publication-title: Bioprinting doi: 10.1016/j.bprint.2019.e00066 – volume: 13 start-page: 505 year: 2018 ident: 10.1016/j.reth.2021.01.007_bib18 article-title: Nano-biphasic calcium phosphate/polyvinyl alcohol composites with enhanced bioactivity for bone repair via low-temperature three-dimensional printing and loading with platelet-rich fibrin publication-title: Int J Nanomed doi: 10.2147/IJN.S152105 – volume: 30 issue: 13 year: 2020 ident: 10.1016/j.reth.2021.01.007_bib54 article-title: Direct 3D printed biomimetic scaffolds based on hydrogel microparticles for cell spheroid growth publication-title: Adv Funct Mater – volume: 146 start-page: 12 year: 2018 ident: 10.1016/j.reth.2021.01.007_bib86 article-title: 3D printing of concentrated alginate/gelatin scaffolds with homogeneous nano apatite coating for bone tissue engineering publication-title: Mater Des doi: 10.1016/j.matdes.2018.03.002 – volume: 12 start-page: 154 issue: 3 year: 2017 ident: 10.1016/j.reth.2021.01.007_bib15 article-title: Customized titanium mesh based on the 3D printed model vs. Manual intraoperative bending of titanium mesh for reconstructing of orbital bone fracture: a randomized clinical trial publication-title: Rev Recent Clin Trials doi: 10.2174/1574887112666170821165206 – volume: 9 start-page: 17691 issue: 1 year: 2019 ident: 10.1016/j.reth.2021.01.007_bib64 article-title: Craniosynostosis surgery: workflow based on virtual surgical planning, intraoperative navigation and 3D printed patient-specific guides and templates publication-title: Sci Rep doi: 10.1038/s41598-019-54148-4 – volume: 10 issue: 7 year: 2019 ident: 10.1016/j.reth.2021.01.007_bib65 article-title: The applications of 3D printing for craniofacial tissue engineering publication-title: Micromachines doi: 10.3390/mi10070480 – volume: 99 start-page: 479 year: 2019 ident: 10.1016/j.reth.2021.01.007_bib67 article-title: Co-culture cell-derived extracellular matrix loaded electrospun microfibrous scaffolds for bone tissue engineering publication-title: Mater Sci Eng C Mater Biol Appl doi: 10.1016/j.msec.2019.01.127 – year: 2002 ident: 10.1016/j.reth.2021.01.007_bib28 – volume: 103 start-page: 109688 year: 2019 ident: 10.1016/j.reth.2021.01.007_bib59 article-title: Fabrication of hierarchically porous silk fibroin-bioactive glass composite scaffold via indirect 3D printing: effect of particle size on physico-mechanical properties and in vitro cellular behavior publication-title: Mater Sci Eng C Mater Biol Appl doi: 10.1016/j.msec.2019.04.067 – volume: 8 start-page: 824 year: 2020 ident: 10.1016/j.reth.2021.01.007_bib82 article-title: 3D printing of cytocompatible graphene/alginate scaffolds for mimetic tissue constructs publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2020.00824 – volume: 18 start-page: 39 issue: 1 year: 2020 ident: 10.1016/j.reth.2021.01.007_bib81 article-title: Preparation of antibacterial and osteoconductive 3D-printed PLGA/Cu(I)@ZIF-8 nanocomposite scaffolds for infected bone repair publication-title: J Nanobiotechnol doi: 10.1186/s12951-020-00594-6 – volume: 10 start-page: 24101 issue: 2 year: 2018 ident: 10.1016/j.reth.2021.01.007_bib87 article-title: A dentin-derived hydrogel bioink for 3D bioprinting of cell laden scaffolds for regenerative dentistry publication-title: Biofabrication doi: 10.1088/1758-5090/aa9b4e – volume: 26 start-page: 247 issue: 10 year: 2015 ident: 10.1016/j.reth.2021.01.007_bib58 article-title: Indirect additive manufacturing as an elegant tool for the production of self-supporting low density gelatin scaffolds publication-title: J Mater Sci Mater Med doi: 10.1007/s10856-015-5566-4 – volume: 21 issue: 3 year: 2020 ident: 10.1016/j.reth.2021.01.007_bib8 article-title: Use of 3D organoids as a model to study idiopathic form of Parkinson’s disease publication-title: Int J Mol Sci doi: 10.3390/ijms21030694 – volume: 31 start-page: 132 issue: 1 year: 2016 ident: 10.1016/j.reth.2021.01.007_bib41 article-title: Improving PEEK bioactivity for craniofacial reconstruction using a 3D printed scaffold embedded with mesenchymal stem cells publication-title: J Biomater Appl doi: 10.1177/0885328216638636 – volume: 12 start-page: 25032 issue: 2 year: 2020 ident: 10.1016/j.reth.2021.01.007_bib44 article-title: Indirect selective laser sintering-printed microporous biphasic calcium phosphate scaffold promotes endogenous bone regeneration via activation of ERK1/2 signaling publication-title: Biofabrication doi: 10.1088/1758-5090/ab78ed – volume: 2 issue: 4 year: 2015 ident: 10.1016/j.reth.2021.01.007_bib46 article-title: Review of selective laser melting: materials and applications publication-title: Appl Phys Rev doi: 10.1063/1.4935926 – volume: 15 start-page: 1081 issue: 9 year: 2020 ident: 10.1016/j.reth.2021.01.007_bib7 article-title: Pluripotent stem cells for neurodegenerative disease modeling: an expert view on their value to drug discovery publication-title: Expet Opin Drug Discov doi: 10.1080/17460441.2020.1767579 – volume: 20 start-page: 12 issue: Suppl 1 year: 2017 ident: 10.1016/j.reth.2021.01.007_bib30 article-title: Analysis of polycaprolactone scaffolds fabricated via precision extrusion deposition for control of craniofacial tissue mineralization publication-title: Orthod Craniofac Res doi: 10.1111/ocr.12159 – start-page: 153 year: 2015 ident: 10.1016/j.reth.2021.01.007_bib57 article-title: Indirect rapid prototyping for tissue engineering – volume: 10 start-page: 42 issue: 1 year: 2004 ident: 10.1016/j.reth.2021.01.007_bib27 article-title: Precision extruding deposition and characterization of cellular poly-ε-caprolactone tissue scaffolds publication-title: Rapid Prototyp J doi: 10.1108/13552540410512525 – volume: 564 start-page: 359 year: 2019 ident: 10.1016/j.reth.2021.01.007_bib48 article-title: Water-based 3D inkjet printing of an oral pharmaceutical dosage form publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2019.04.026 – volume: 370 start-page: 20140375 issue: 1680 year: 2015 ident: 10.1016/j.reth.2021.01.007_bib2 article-title: Progressing a human embryonic stem-cell-based regenerative medicine therapy towards the clinic publication-title: Philos Trans R Soc Lond B Biol Sci doi: 10.1098/rstb.2014.0375 – volume: 7 start-page: 3345 issue: 12 year: 2006 ident: 10.1016/j.reth.2021.01.007_bib12 article-title: Processing and characterization of porous structures from chitosan and starch for tissue engineering scaffolds publication-title: Biomacromolecules doi: 10.1021/bm0605311 – volume: 12 issue: 3 year: 2020 ident: 10.1016/j.reth.2021.01.007_bib47 article-title: Preparation and characterization of color photocurable resins for full-color material jetting additive manufacturing publication-title: Polymers doi: 10.3390/polym12030650 – volume: 14 year: 2019 ident: 10.1016/j.reth.2021.01.007_bib75 article-title: 3D printing of layered mesoporous bioactive glass:sodium alginate-sodium alginate scaffolds with controllable dual-drug release behaviors publication-title: Biomed Mater doi: 10.1088/1748-605X/ab4166 – volume: 6 start-page: 2173 issue: 12 year: 2017 ident: 10.1016/j.reth.2021.01.007_bib3 article-title: Concise review: multifaceted characterization of human mesenchymal stem cells for use in regenerative medicine publication-title: Stem Cells Transl Med doi: 10.1002/sctm.17-0129 – volume: 10 start-page: 25002 issue: 2 year: 2018 ident: 10.1016/j.reth.2021.01.007_bib13 article-title: Direct three-dimensional printing of polymeric scaffolds with nanofibrous topography publication-title: Biofabrication doi: 10.1088/1758-5090/aaa15b – volume: 220 start-page: 57 issue: 1 year: 2006 ident: 10.1016/j.reth.2021.01.007_bib43 article-title: Indirect selective laser sintering of an apatite-mullite glass-ceramic for potential use in bone replacement applications publication-title: Proc Inst Mech Eng H doi: 10.1243/095441105X69051 – volume: 115 start-page: 495 issue: 2 year: 2018 ident: 10.1016/j.reth.2021.01.007_bib17 article-title: Effects of scaffold microstructure and low intensity pulsed ultrasound on chondrogenic differentiation of human mesenchymal stem cells publication-title: Biotechnol Bioeng doi: 10.1002/bit.26480 – volume: 222 start-page: 1107 issue: 7 year: 2008 ident: 10.1016/j.reth.2021.01.007_bib42 article-title: Indirect selective laser sintering of apatite-wollostonite glass-ceramic publication-title: Proc Inst Mech Eng H doi: 10.1243/09544119JEIM411 – volume: 11 start-page: 23275 issue: 48 year: 2019 ident: 10.1016/j.reth.2021.01.007_bib83 article-title: Graphene oxide/alginate composites as novel bioinks for three-dimensional mesenchymal stem cell printing and bone regeneration applications publication-title: Nanoscale doi: 10.1039/C9NR07643C – volume: 58 start-page: 7421 issue: 18 year: 2019 ident: 10.1016/j.reth.2021.01.007_bib90 article-title: Development of gelatin and graphene-based nerve regeneration conduits using three-dimensional (3D) printing strategies for electrical transdifferentiation of mesenchymal stem cells publication-title: Ind Eng Chem Res doi: 10.1021/acs.iecr.8b05537 – volume: 108 start-page: 2484 issue: 6 year: 2020 ident: 10.1016/j.reth.2021.01.007_bib69 article-title: In vivo degradation rate of alginate-chitosan hydrogels influences tissue repair following physeal injury publication-title: J Biomed Mater Res B Appl Biomater doi: 10.1002/jbm.b.34580 – volume: 43 start-page: 618 issue: 9 year: 2017 ident: 10.1016/j.reth.2021.01.007_bib79 article-title: 3D bioprint me: a socioethical view of bioprinting human organs and tissues publication-title: J Med Ethics doi: 10.1136/medethics-2015-103347 – volume: 282 start-page: 17 issue: 1 year: 2000 ident: 10.1016/j.reth.2021.01.007_bib32 article-title: Desktop manufacturing of complex objects, prototypes and biomedical scaffolds by means of computer-assisted design combined with computer-guided 3D plotting of polymers and reactive oligomers publication-title: Macromol Mater Eng doi: 10.1002/1439-2054(20001001)282:1<17::AID-MAME17>3.0.CO;2-8 – start-page: 1 year: 2020 ident: 10.1016/j.reth.2021.01.007_bib62 article-title: The reproduction of human pathology specimens using three-dimensional (3D) printing technology for teaching purposes publication-title: Med Teach doi: 10.1080/0142159X.2020.1841127 – volume: 6 start-page: 15653 issue: 18 year: 2014 ident: 10.1016/j.reth.2021.01.007_bib11 article-title: Monolithic space-filling porous materials from engineering plastics by thermally induced phase separation publication-title: ACS Appl Mater Interfaces doi: 10.1021/am502977z – volume: 8 start-page: 552 year: 2020 ident: 10.1016/j.reth.2021.01.007_bib24 article-title: Polymer-bioactive glass composite filaments for 3D scaffold manufacturing by fused deposition modeling: fabrication and characterization publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2020.00552 – volume: 20 start-page: 192 issue: 3 year: 2014 ident: 10.1016/j.reth.2021.01.007_bib21 article-title: A review of melt extrusion additive manufacturing processes: I. Process design and modeling publication-title: Rapid Prototyping Journal doi: 10.1108/RPJ-01-2013-0012 – volume: 2 start-page: 25002 issue: 2 year: 2010 ident: 10.1016/j.reth.2021.01.007_bib31 article-title: Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering publication-title: Biofabrication doi: 10.1088/1758-5082/2/2/025002 – volume: 14 start-page: 1 issue: S1 year: 2009 ident: 10.1016/j.reth.2021.01.007_bib39 article-title: Rapid prototyping and manufacturing technology: principle, representative technics, applications, and development trends publication-title: Tsinghua Sci Technol doi: 10.1016/S1007-0214(09)70059-8 – volume: 250 start-page: 116914 year: 2020 ident: 10.1016/j.reth.2021.01.007_bib72 article-title: Bone-derived dECM/alginate bioink for fabricating a 3D cell-laden mesh structure for bone tissue engineering publication-title: Carbohydr Polym doi: 10.1016/j.carbpol.2020.116914 – volume: 16 start-page: 496 issue: 12 year: 2013 ident: 10.1016/j.reth.2021.01.007_bib1 article-title: Bone tissue engineering using 3D printing publication-title: Mater Today doi: 10.1016/j.mattod.2013.11.017 – volume: 100 start-page: 286 year: 2019 ident: 10.1016/j.reth.2021.01.007_bib14 article-title: Highly porous PHB-based bioactive scaffolds for bone tissue engineering by in situ synthesis of hydroxyapatite publication-title: Mater Sci Eng C Mater Biol Appl doi: 10.1016/j.msec.2019.03.014 – volume: 12 issue: 20 year: 2019 ident: 10.1016/j.reth.2021.01.007_bib76 article-title: Human stem cell responses and surface characteristics of 3D printing Co-Cr dental material publication-title: Materials doi: 10.3390/ma12203419 – volume: 54 start-page: 386 year: 2017 ident: 10.1016/j.reth.2021.01.007_bib36 article-title: Surface-enrichment with hydroxyapatite nanoparticles in stereolithography-fabricated composite polymer scaffolds promotes bone repair publication-title: Acta Biomater doi: 10.1016/j.actbio.2017.03.006 – volume: 5 start-page: 855 issue: 17 year: 2020 ident: 10.1016/j.reth.2021.01.007_bib56 article-title: Indirect versus direct 3D printing of hydrogel scaffolds for adipose tissue regeneration publication-title: MRS Adv doi: 10.1557/adv.2020.117 – volume: 5 start-page: 1 year: 2016 ident: 10.1016/j.reth.2021.01.007_bib60 article-title: Computed tomographic evaluation of novel custom-made artificial bones, “CT-bone”, applied for maxillofacial reconstruction publication-title: Regen Ther doi: 10.1016/j.reth.2016.05.002 – volume: 11 start-page: 18896 year: 2019 ident: 10.1016/j.reth.2021.01.007_bib80 article-title: 3D printed scaffolds with controlled micro-/nano-porous surface topography direct chondrogenic and osteogenic differentiation of mesenchymal stem cells publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.9b01472 – volume: 1463 start-page: 37 issue: 1 year: 2020 ident: 10.1016/j.reth.2021.01.007_bib88 article-title: Improvement of osseointegration by recruiting stem cells to titanium implants fabricated with 3D printing publication-title: Ann N Y Acad Sci doi: 10.1111/nyas.14251 – volume: 31 start-page: 107476 issue: 1 year: 2020 ident: 10.1016/j.reth.2021.01.007_bib6 article-title: A modular differentiation system maps multiple human kidney lineages from pluripotent stem cells publication-title: Cell Rep doi: 10.1016/j.celrep.2020.03.040 – volume: 111 start-page: 110844 year: 2020 ident: 10.1016/j.reth.2021.01.007_bib38 article-title: Integrating cold atmospheric plasma with 3D printed bioactive nanocomposite scaffold for cartilage regeneration publication-title: Mater Sci Eng C Mater Biol Appl doi: 10.1016/j.msec.2020.110844 – volume: 13 start-page: 9595 issue: 8 year: 2019 ident: 10.1016/j.reth.2021.01.007_bib74 article-title: Hierarchically porous hydroxyapatite hybrid scaffold incorporated with reduced graphene oxide for rapid bone ingrowth and repair publication-title: ACS Nano doi: 10.1021/acsnano.9b04723 |
SSID | ssj0001851298 |
Score | 2.5174048 |
SecondaryResourceType | review_article |
Snippet | Due to traffic accidents, injuries, burns, congenital malformations and other reasons, a large number of patients with tissue or organ defects need urgent... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 63 |
SubjectTerms | 3D printing Bone tissue engineering Review Scaffold materials Stem cells |
Title | Applications of 3D printed bone tissue engineering scaffolds in the stem cell field |
URI | https://dx.doi.org/10.1016/j.reth.2021.01.007 https://www.ncbi.nlm.nih.gov/pubmed/33598507 https://www.proquest.com/docview/2491063269 https://pubmed.ncbi.nlm.nih.gov/PMC7868584 https://doaj.org/article/1338776162464240813be1e4675a7449 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYv4dn0RQbxIsY80j-P6QhQFUcFbaNIEV7Qrbj34751Ju2tXQS9C6aFN2yQz6XyTTL4hZA-telkKHmWM-4hJayJlwEtRjKdeWAk_TlzRvbrm5_fs4iF_6KT6wpiwhh646bhD9KEE-No8ZQCVGViwzLjEwfjOC8FY2LoHNq_jTIXZFYmGLKSjA4QRZWnM2h0zTXDXm6txJSJNAmcn5pLtWKVA3j9lnH6Cz-8xlB2jdLZA5ls0SftNKxbJjKuWyHK_Ak_65YPu0xDfGSbOl8ltv7NWTYeeZicUZ_UAclIzrBytgwyo-2IopCNbeD98Lkd0UFGAihRpnylO9tMQ-rZC7s9O747PozalQmR5ktSRsKnNHO7HtbEvVBHHlomUeeONSgGMyNiawnNA3FleeKtKCeYe5JwUxinHVbZKZiuo0jqhRkmRem6dN4CpRGmwhJKxU1xK71SPJOMu1bblG8e0F896HFj2pFEMGsWgYzhi0SMHk2deG7aNX0sfoaQmJZEpO1wA_dGt_ui_9KdH8rGcdQs6GjABrxr8-vHdsVJoGJHY80Xlhu8jDQ4t-NkAi-Hda42STKqYIWFijk-LKfWZasP0nWrwGFi_hcRUAWzjPxq9SeawKU0s3RaZrd_e3TaAq9rshHEE58sb-QmOSR3I |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applications+of+3D+printed+bone+tissue+engineering+scaffolds+in+the+stem+cell+field&rft.jtitle=Regenerative+therapy&rft.au=Su%2C+Xin&rft.au=Wang%2C+Ting&rft.au=Guo%2C+Shu&rft.date=2021-03-01&rft.pub=Japanese+Society+for+Regenerative+Medicine&rft.eissn=2352-3204&rft.volume=16&rft.spage=63&rft.epage=72&rft_id=info:doi/10.1016%2Fj.reth.2021.01.007&rft_id=info%3Apmid%2F33598507&rft.externalDocID=PMC7868584 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-3204&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-3204&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-3204&client=summon |