Applications of 3D printed bone tissue engineering scaffolds in the stem cell field

Due to traffic accidents, injuries, burns, congenital malformations and other reasons, a large number of patients with tissue or organ defects need urgent treatment every year. The shortage of donors, graft rejection and other problems cause a deficient supply for organ and tissue replacement, repai...

Full description

Saved in:
Bibliographic Details
Published inRegenerative therapy Vol. 16; pp. 63 - 72
Main Authors Su, Xin, Wang, Ting, Guo, Shu
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.03.2021
Japanese Society for Regenerative Medicine
Elsevier
Subjects
PRF
SLA
STL
SLM
HAp
CAD
AM
iPS
BCP
DCM
CAP
PCL
TCP
PDA
FDM
ABS
LDM
GO
HTy
ECM
PED
3D
CT
PC
PEG
HA
PVA
Alg
Online AccessGet full text

Cover

Loading…
Abstract Due to traffic accidents, injuries, burns, congenital malformations and other reasons, a large number of patients with tissue or organ defects need urgent treatment every year. The shortage of donors, graft rejection and other problems cause a deficient supply for organ and tissue replacement, repair and regeneration of patients, so regenerative medicine came into being. Stem cell therapy plays an important role in the field of regenerative medicine, but it is difficult to fill large tissue defects by injection alone. The scientists combine three-dimensional (3D) printed bone tissue engineering scaffolds with stem cells to achieve the desired effect. These scaffolds can mimic the extracellular matrix (ECM), bone and cartilage, and eventually form functional tissues or organs by providing structural support and promoting attachment, proliferation and differentiation. This paper mainly discussed the applications of 3D printed bone tissue engineering scaffolds in stem cell regenerative medicine. The application examples of different 3D printing technologies and different raw materials are introduced and compared. Then we discuss the superiority of 3D printing technology over traditional methods, put forward some problems and limitations, and look forward to the future.
AbstractList Due to traffic accidents, injuries, burns, congenital malformations and other reasons, a large number of patients with tissue or organ defects need urgent treatment every year. The shortage of donors, graft rejection and other problems cause a deficient supply for organ and tissue replacement, repair and regeneration of patients, so regenerative medicine came into being. Stem cell therapy plays an important role in the field of regenerative medicine, but it is difficult to fill large tissue defects by injection alone. The scientists combine three-dimensional (3D) printed bone tissue engineering scaffolds with stem cells to achieve the desired effect. These scaffolds can mimic the extracellular matrix (ECM), bone and cartilage, and eventually form functional tissues or organs by providing structural support and promoting attachment, proliferation and differentiation. This paper mainly discussed the applications of 3D printed bone tissue engineering scaffolds in stem cell regenerative medicine. The application examples of different 3D printing technologies and different raw materials are introduced and compared. Then we discuss the superiority of 3D printing technology over traditional methods, put forward some problems and limitations, and look forward to the future.
Due to traffic accidents, injuries, burns, congenital malformations and other reasons, a large number of patients with tissue or organ defects need urgent treatment every year. The shortage of donors, graft rejection and other problems cause a deficient supply for organ and tissue replacement, repair and regeneration of patients, so regenerative medicine came into being. Stem cell therapy plays an important role in the field of regenerative medicine, but it is difficult to fill large tissue defects by injection alone. The scientists combine three-dimensional (3D) printed bone tissue engineering scaffolds with stem cells to achieve the desired effect. These scaffolds can mimic the extracellular matrix (ECM), bone and cartilage, and eventually form functional tissues or organs by providing structural support and promoting attachment, proliferation and differentiation. This paper mainly discussed the applications of 3D printed bone tissue engineering scaffolds in stem cell regenerative medicine. The application examples of different 3D printing technologies and different raw materials are introduced and compared. Then we discuss the superiority of 3D printing technology over traditional methods, put forward some problems and limitations, and look forward to the future.Due to traffic accidents, injuries, burns, congenital malformations and other reasons, a large number of patients with tissue or organ defects need urgent treatment every year. The shortage of donors, graft rejection and other problems cause a deficient supply for organ and tissue replacement, repair and regeneration of patients, so regenerative medicine came into being. Stem cell therapy plays an important role in the field of regenerative medicine, but it is difficult to fill large tissue defects by injection alone. The scientists combine three-dimensional (3D) printed bone tissue engineering scaffolds with stem cells to achieve the desired effect. These scaffolds can mimic the extracellular matrix (ECM), bone and cartilage, and eventually form functional tissues or organs by providing structural support and promoting attachment, proliferation and differentiation. This paper mainly discussed the applications of 3D printed bone tissue engineering scaffolds in stem cell regenerative medicine. The application examples of different 3D printing technologies and different raw materials are introduced and compared. Then we discuss the superiority of 3D printing technology over traditional methods, put forward some problems and limitations, and look forward to the future.
Author Guo, Shu
Wang, Ting
Su, Xin
Author_xml – sequence: 1
  givenname: Xin
  orcidid: 0000-0002-2208-9750
  surname: Su
  fullname: Su, Xin
  email: 915165607@qq.com
– sequence: 2
  givenname: Ting
  surname: Wang
  fullname: Wang, Ting
  email: twang@cmu.edu.cn
– sequence: 3
  givenname: Shu
  surname: Guo
  fullname: Guo, Shu
  email: sguo@cmu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33598507$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1rGzEQhpeS0qRp_kAPRcde7Opr9QGlENKvQKCHtmeh1Y5smbXkSnIg_75aOylJDwGBhGbe5x1m5nV3ElOErntL8JJgIj5slhnqekkxJUvcDpYvujPKerpgFPOTR-_T7qKUDcaYqJ5QrV51p4z1WvVYnnU_L3e7KThbQ4oFJY_YZ7TLIVYY0dAcUQ2l7AFBXIUI0CIrVJz1Pk1jQSGiugZUKmyRg2lCPsA0vuleejsVuLi_z7vfX7_8uvq-uPnx7frq8mbhBCF1IR11DDDTzGFvtcXYcUm5H_ygqeiVwm6wXkiqWW-906MShMEAxA6gQWh23l0fuWOyG9Oq3tp8Z5IN5vCR8srYXIObwBDGlJSCCMoFpxwrwhoIuJC9lZzPrE9H1m4_bGF0EGu20xPo00gMa7NKt0YqoXrFG-D9PSCnP3so1WxDmXtiI6R9MZRrggWjh7rfPfb6Z_IwlZagjgkup1IyeONCPYyoWYfJEGzmHTAbM--AmXfA4HYOUvqf9IH-rOjjUQRtWrcBsikuQHQwhgyutnaG5-R_AVhsydA
CitedBy_id crossref_primary_10_1002_ibra_12087
crossref_primary_10_1021_acsbiomaterials_4c01764
crossref_primary_10_3390_jfb14100530
crossref_primary_10_3390_pharmaceutics15051385
crossref_primary_10_3390_polym14050899
crossref_primary_10_3390_ijms23084462
crossref_primary_10_3390_surgeries3030018
crossref_primary_10_1016_j_mtnano_2023_100385
crossref_primary_10_1007_s12015_024_10697_4
crossref_primary_10_1016_j_jphotochem_2023_115064
crossref_primary_10_3389_frans_2024_1505510
crossref_primary_10_1016_j_biomaterials_2022_121639
crossref_primary_10_1002_smll_202402419
crossref_primary_10_3390_biomimetics9030154
crossref_primary_10_1016_j_eurpolymj_2023_112059
crossref_primary_10_1016_j_jmst_2021_11_084
crossref_primary_10_1007_s10439_024_03479_z
crossref_primary_10_3390_ijms231710109
crossref_primary_10_3390_bioengineering10030287
crossref_primary_10_3390_jfb15010007
crossref_primary_10_1007_s40883_022_00286_7
crossref_primary_10_1088_2057_1976_acc6d5
crossref_primary_10_3390_polym16010165
crossref_primary_10_3390_ma15124280
crossref_primary_10_3390_cells13121065
crossref_primary_10_1002_smm2_1244
crossref_primary_10_1039_D3NA00291H
crossref_primary_10_1093_rb_rbad093
crossref_primary_10_1039_D3RA01700A
crossref_primary_10_1007_s10856_022_06708_w
crossref_primary_10_1088_1758_5090_acbe21
crossref_primary_10_1016_j_ymeth_2022_08_003
crossref_primary_10_1108_RPJ_01_2021_0011
crossref_primary_10_3389_fmats_2021_719536
crossref_primary_10_3390_biomimetics8020246
crossref_primary_10_1016_j_bprint_2025_e00400
crossref_primary_10_1016_j_jmbbm_2021_104887
crossref_primary_10_1016_j_ijbiomac_2023_124039
crossref_primary_10_3390_gels10030182
crossref_primary_10_1016_j_molmed_2021_05_001
crossref_primary_10_1089_ten_teb_2021_0127
crossref_primary_10_1021_acsomega_3c10271
crossref_primary_10_34172_japid_2024_015
crossref_primary_10_1016_j_matdes_2023_111885
crossref_primary_10_1002_btm2_10503
crossref_primary_10_1039_D3TB01236K
crossref_primary_10_1088_1758_5090_ad905f
crossref_primary_10_1007_s40430_021_03280_2
crossref_primary_10_1016_j_heliyon_2023_e21872
crossref_primary_10_3390_ijms23063352
crossref_primary_10_1007_s40032_024_01112_5
crossref_primary_10_2139_ssrn_4147190
crossref_primary_10_1021_acsbiomaterials_3c00871
crossref_primary_10_2109_jcersj2_21108
crossref_primary_10_1002_anbr_202300035
crossref_primary_10_1016_j_msec_2021_112372
crossref_primary_10_3389_fmats_2023_1058050
crossref_primary_10_22201_ceiich_24485691e_2025_34_69828
crossref_primary_10_3390_biomimetics9080503
crossref_primary_10_1016_j_matchemphys_2023_127515
crossref_primary_10_1002_mame_202100863
crossref_primary_10_1186_s13287_022_03204_4
crossref_primary_10_1007_s44174_024_00254_5
crossref_primary_10_1016_j_matdes_2024_113277
crossref_primary_10_1016_j_eurpolymj_2023_112255
crossref_primary_10_1016_j_jmbbm_2024_106470
crossref_primary_10_3390_biomimetics8010016
crossref_primary_10_3389_fphar_2022_1044726
crossref_primary_10_3389_fphar_2022_920824
crossref_primary_10_1007_s41683_024_00126_6
crossref_primary_10_1016_j_mattod_2023_05_030
crossref_primary_10_1021_acsomega_3c07062
crossref_primary_10_7759_cureus_57396
crossref_primary_10_15406_atroa_2024_10_00147
crossref_primary_10_3390_app11188677
crossref_primary_10_1007_s00210_023_02541_2
crossref_primary_10_1016_j_carbpol_2024_121945
crossref_primary_10_1002_pat_5445
crossref_primary_10_1016_j_ijbiomac_2022_07_140
crossref_primary_10_3390_molecules30020276
crossref_primary_10_1002_pol_20210251
crossref_primary_10_1016_j_ijbiomac_2023_124004
crossref_primary_10_1016_j_jmbbm_2023_105727
crossref_primary_10_3934_matersci_2022021
crossref_primary_10_1016_j_ceramint_2022_06_204
crossref_primary_10_1016_j_ijbiomac_2022_04_056
crossref_primary_10_1111_jace_20508
crossref_primary_10_1186_s40902_022_00340_y
crossref_primary_10_1016_j_colsurfa_2023_132740
crossref_primary_10_3390_biomedicines12051090
crossref_primary_10_3390_pharmaceutics15061728
crossref_primary_10_3389_fbioe_2023_1127929
crossref_primary_10_1002_adhm_202402415
crossref_primary_10_1007_s00266_024_03871_z
crossref_primary_10_1016_j_ceramint_2024_09_294
crossref_primary_10_3390_gels8070421
crossref_primary_10_1016_j_nanoms_2024_08_001
crossref_primary_10_1016_j_ceramint_2023_01_075
crossref_primary_10_3390_pharmaceutics15102405
crossref_primary_10_1002_adhm_202201384
crossref_primary_10_1016_j_ijbiomac_2022_03_096
crossref_primary_10_3390_polym15112473
crossref_primary_10_1007_s44411_024_00011_6
crossref_primary_10_1016_j_carpta_2024_100640
crossref_primary_10_1016_j_eurpolymj_2023_112352
crossref_primary_10_3390_ma14123149
crossref_primary_10_3390_ma15031054
crossref_primary_10_1016_j_stlm_2024_100149
crossref_primary_10_1016_j_jot_2023_08_006
crossref_primary_10_3389_fbioe_2022_921092
crossref_primary_10_1016_j_matchemphys_2022_125785
crossref_primary_10_3389_fcell_2024_1459891
crossref_primary_10_3390_coatings13091644
crossref_primary_10_2174_0113852728293437240227065230
crossref_primary_10_34133_bmr_0127
crossref_primary_10_1016_j_tibtech_2024_07_017
crossref_primary_10_1002_adhm_202202766
crossref_primary_10_1002_jbm_a_37455
crossref_primary_10_1021_acsbiomaterials_3c01485
crossref_primary_10_1089_ten_teb_2023_0124
Cites_doi 10.1007/s10544-018-0301-9
10.2147/IJN.S217245
10.1088/1758-5082/3/3/034109
10.1088/2053-1591/ab1dee
10.1007/s40436-014-0097-7
10.18063/ijb.v5i2.197
10.1088/2399-7532/ab201f
10.1016/j.biomaterials.2012.04.050
10.1002/advs.201900867
10.1016/j.msec.2019.110128
10.1002/jbm.a.36289
10.1002/ase.1805
10.1016/j.prosdent.2020.06.026
10.3390/gels6010010
10.3390/biom10010052
10.1088/1758-5090/8/3/035020
10.1039/C8BM01269E
10.3390/cells8080886
10.1039/C9RA10275B
10.1016/j.stem.2020.09.014
10.1067/j.cpradiol.2015.07.009
10.1002/adhm.201500168
10.1016/j.bioactmat.2017.10.001
10.1089/3dp.2014.0006
10.1016/j.colsurfb.2020.111056
10.3390/ma13214714
10.1002/jbm.a.36490
10.1007/s10856-019-6257-3
10.1016/j.cell.2006.07.024
10.1088/1758-5082/3/2/025004
10.2147/IJN.S259678
10.1002/jbm.b.34417
10.1016/j.dental.2019.04.004
10.3390/ijms21093401
10.1016/j.msec.2019.04.011
10.1016/j.bprint.2019.e00066
10.2147/IJN.S152105
10.1016/j.matdes.2018.03.002
10.2174/1574887112666170821165206
10.1038/s41598-019-54148-4
10.3390/mi10070480
10.1016/j.msec.2019.01.127
10.1016/j.msec.2019.04.067
10.3389/fbioe.2020.00824
10.1186/s12951-020-00594-6
10.1088/1758-5090/aa9b4e
10.1007/s10856-015-5566-4
10.3390/ijms21030694
10.1177/0885328216638636
10.1088/1758-5090/ab78ed
10.1063/1.4935926
10.1080/17460441.2020.1767579
10.1111/ocr.12159
10.1108/13552540410512525
10.1016/j.ijpharm.2019.04.026
10.1098/rstb.2014.0375
10.1021/bm0605311
10.3390/polym12030650
10.1088/1748-605X/ab4166
10.1002/sctm.17-0129
10.1088/1758-5090/aaa15b
10.1243/095441105X69051
10.1002/bit.26480
10.1243/09544119JEIM411
10.1039/C9NR07643C
10.1021/acs.iecr.8b05537
10.1002/jbm.b.34580
10.1136/medethics-2015-103347
10.1002/1439-2054(20001001)282:1<17::AID-MAME17>3.0.CO;2-8
10.1080/0142159X.2020.1841127
10.1021/am502977z
10.3389/fbioe.2020.00552
10.1108/RPJ-01-2013-0012
10.1088/1758-5082/2/2/025002
10.1016/S1007-0214(09)70059-8
10.1016/j.carbpol.2020.116914
10.1016/j.mattod.2013.11.017
10.1016/j.msec.2019.03.014
10.3390/ma12203419
10.1016/j.actbio.2017.03.006
10.1557/adv.2020.117
10.1016/j.reth.2016.05.002
10.1021/acsami.9b01472
10.1111/nyas.14251
10.1016/j.celrep.2020.03.040
10.1016/j.msec.2020.110844
10.1021/acsnano.9b04723
ContentType Journal Article
Copyright 2021 The Japanese Society for Regenerative Medicine
2021 The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V.
2021 The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. 2021 The Japanese Society for Regenerative Medicine
Copyright_xml – notice: 2021 The Japanese Society for Regenerative Medicine
– notice: 2021 The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V.
– notice: 2021 The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. 2021 The Japanese Society for Regenerative Medicine
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.reth.2021.01.007
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2352-3204
EndPage 72
ExternalDocumentID oai_doaj_org_article_1338776162464240813be1e4675a7449
PMC7868584
33598507
10_1016_j_reth_2021_01_007
S2352320421000079
Genre Journal Article
Review
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
HZ~
IPNFZ
KQ8
M41
M~E
NCXOZ
O9-
OK1
RIG
ROL
RPM
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c611t-7c2c3e0393c0fa9a00c4724fbfb9265880cbaf672935afc9d8613ebe1abe9e693
IEDL.DBID DOA
ISSN 2352-3204
IngestDate Wed Aug 27 01:29:39 EDT 2025
Thu Aug 21 18:31:12 EDT 2025
Fri Jul 11 10:46:05 EDT 2025
Mon Jul 21 06:07:01 EDT 2025
Thu Apr 24 22:51:40 EDT 2025
Tue Jul 01 03:44:11 EDT 2025
Fri Feb 23 02:44:16 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords LIPUS
PRF
rBMSCs
SLA
STL
MSCs
SLM
HAp
ESCs
dECM
CHMA
CAD
AM
iPS
BCP
DCM
CAP
Stem cells
PCL
BMSCs
TCP
hMSCs
hADSC
PPSU
Scaffold materials
pcHμPs
PDA
SF-BG
FDM
MBG/SA–SA
ABS
LDM
PLLA
ASCs
SCAPs
PEGDA
GO
RAD16-I
Bone tissue engineering
HTy
ECM
PED
3D
CT
PC
PEG
PLGA
HA
PVA
Alg
3D printing
RAD16-I, a soft nanofibrous self-assembling peptide
GO, graphene oxide
MBG/SA–SA, mesoporous bioactive glass/sodium alginate-sodium alginate
ECM, extracellular matrix
LIPUS, low intensity pulsed ultrasound
HTy, 4-hydroxyphenethyl 2-(4-hydroxyphenyl) acetate
hMSCs, human mesenchymal stem cells
SLA, Stereolithography
HAp, hydroxyapatite nanoparticles
PLLA, poly l-lactide
iPS, induced pluripotent stem
ASCs, adult stem cells
dECM, decellularized bovine cartilage extracellular matrix
pcHμPs, novel self-healable pre-cross- linked hydrogel microparticles
SLM, Selective Laser Melting
ABS, Acrylonitrile Butadiene Styrene plastic
AM, additive manufacturing
PLGA, poly (lactide-co-glycolide)
3D, three-dimensional
CAD, computer-aided design
Alg, alginate
BMSCs, bone marrow-derived mesenchymal stem cells
PCL, polycraprolactone
CAP, cold atmospheric plasma
HA, hydroxyapatite
SCAPs, human stem cells from the apical papilla
SF-BG, silk fibroin and silk fibroin-bioactive glass
CHMA, chitosan methacrylate
FDM, fused deposition molding
CT, computed tomography
DCM, dichloromethane
TCP, β-tricalcium phosphate
PED, Precision Extrusion Deposition
STL, standard tessellation language
PEG, Polyethylene glycol
rBMSCs, rat bone marrow stem cells
PC, Polycarbonate
MSCs, Marrow stem cells
BCP, biphasic calcium phosphate
PDA, polydopamine
PVA, polyvinyl alcohol
PRF, platelet-rich fibrin
hADSC, human adipose derived stem cells
PEGDA, poly (ethylene glycol) diacrylate
LDM, Low Temperature Deposition Modeling
ESCs, embryonic stem cells
PPSU, Polyphenylene sulfone resins
Language English
License This is an open access article under the CC BY-NC-ND license.
2021 The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c611t-7c2c3e0393c0fa9a00c4724fbfb9265880cbaf672935afc9d8613ebe1abe9e693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-2208-9750
OpenAccessLink https://doaj.org/article/1338776162464240813be1e4675a7449
PMID 33598507
PQID 2491063269
PQPubID 23479
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_1338776162464240813be1e4675a7449
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7868584
proquest_miscellaneous_2491063269
pubmed_primary_33598507
crossref_citationtrail_10_1016_j_reth_2021_01_007
crossref_primary_10_1016_j_reth_2021_01_007
elsevier_sciencedirect_doi_10_1016_j_reth_2021_01_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Regenerative therapy
PublicationTitleAlternate Regen Ther
PublicationYear 2021
Publisher Elsevier B.V
Japanese Society for Regenerative Medicine
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Japanese Society for Regenerative Medicine
– name: Elsevier
References Mostafaei, Rodriguez De Vecchis, Buckenmeyer, Wasule, Brown, Chmielus (bib49) 2019; 102
Samsonraj, Raghunath, Nurcombe, Hui, van Wijnen, Cool (bib3) 2017; 6
Goodridge, Dalgarno, Wood (bib43) 2006; 220
Chen, Li, Cui, Dong, Yu (bib7) 2020; 15
Cader, Rance, Alexander, Goncalves, Roberts, Tuck (bib48) 2019; 564
Prasopthum, Shakesheff, Yang (bib13) 2018; 10
Li, Liu, Crook, Wallace (bib82) 2020; 8
Prasopthum, Jiang, Lv, Xia, Ma (bib80) 2019; 11
Cheng, Huang (bib47) 2020; 12
Van Damme, Briant, Blondeel, Van Vlierberghe (bib56) 2020; 5
Do, Khorsand, Geary, Salem (bib10) 2015; 4
Young, Quayle, Adams, Bertram, McMenamin (bib61) 2019; 12
Carvalho, Silva, Udangawa, Cabral, Ferreira, da Silva (bib67) 2019; 99
Gremare, Guduric, Bareille, Heroguez, Latour, L’Heureux (bib23) 2018; 106
Whiting, Kerby, Coffey, da Cruz, McKernan (bib2) 2015; 370
Degli Esposti, Chiellini, Bondioli, Morselli, Fabbri (bib14) 2019; 100
Fu, Du, Zhu, Tian, Wei, Zhu (bib75) 2019; 14
Tao, Kort-Mascort, Lin, Pham, Charbonneau, ElKashty (bib65) 2019; 10
Aliabouzar, Lee, Zhou, Zhang, Sarkar (bib17) 2018; 115
Billiet, Vandenhaute, Schelfhout, Van Vlierberghe, Dubruel (bib33) 2012; 33
Rajaram, Schreyer, Chen (bib34) 2014; 1
Moncal, Aydin, Abu-Laban, Heo, Rizk, Tucker (bib84) 2019; 105
Turnbull, Clarke, Picard, Riches, Jia, Han (bib20) 2018; 3
Xiao, Dalgarno, Wood, Goodridge, Ohtsuki (bib42) 2008; 222
McMenamin, Hussey, Chin, Alam, Quayle, Coupland (bib62) 2020
Chaji, Al-Saleh, Gomillion (bib77) 2020; 6
Zou, Jiang, Lv, Xia, Ma (bib81) 2020; 18
Bellini (bib28) 2002
Tian, Zhang, Tian, Zhang, Wang (bib25) 2020; 10
Landers, Mülhaupt (bib32) 2000; 282
De Maria, De Acutis, Vozzi (bib57) 2015
Nakamatsu, Torres, Troncoso, Min-Lin, Boccaccini (bib12) 2006; 7
Hamid, Snyder, Wang, Timmer, Hammer, Guceri (bib29) 2011; 3
Guillaume, Geven, Sprecher, Stadelmann, Grijpma, Tang (bib36) 2017; 54
Yan, Li, Zhang, Lin, Wu (bib39) 2009; 14
Xu, Li, Suo, Yan, Liu, Wang (bib31) 2010; 2
Simoneti, Pereira-Cenci, Dos Santos (bib16) 2020
Lee, Yan, Zhou, Cui, Esworthy, Hann (bib38) 2020; 111
Wang, Shor, Darling, Khalil, Sun, Güçeri (bib27) 2004; 10
Fahimipour, Dashtimoghadam, Mahdi Hasani-Sadrabadi, Vargas, Vashaee, Lobner (bib89) 2019; 35
Tsujimoto, Kasahara, Sueta, Araoka, Sakamoto, Okada (bib6) 2020; 31
Vermeulen, Haddow, Seymour, Faulkner-Jones, Shu (bib79) 2017; 43
Nowicki, Zhu, Sarkar, Rao, Zhang (bib55) 2020; 17
Chi, Chen, He, Chen, Tu, Liu (bib71) 2020; 15
Bhargav, Min, Wen Feng, Fuh, Rosa (bib51) 2020; 108
Zhang, Cong, Osi, Zhou, Huang, Zaccaria (bib54) 2020; 30
Zhou, Yu, Shi, Ling, Zeng, Chen (bib74) 2019; 13
Bollman, Malbrue, Li, Yao, Guo, Yao (bib88) 2020; 1463
Yamanaka (bib9) 2020; 27
Liu, Tian, Hao, Yang, Geng, Zhang (bib70) 2019; 30
Athirasala, Tahayeri, Thrivikraman, Franca, Monteiro, Tran (bib87) 2018; 10
Ganguli, Pagan-Diaz, Grant, Cvetkovic, Bramlet, Vozenilek (bib63) 2018; 20
Garcia-Mato, Ochandiano, Garcia-Sevilla, Navarro-Cuellar, Darriba-Alles, Garcia-Leal (bib64) 2019; 9
Kazimierczak, Benko, Nocun, Przekora (bib68) 2019; 14
Jaber, Kovacs (bib40) 2019; 6
Roskies, Jordan, Fang, Abdallah, Hier, Mlynarek (bib41) 2016; 31
Song, Lin, He, Wang, Zhang, Li (bib18) 2018; 13
Uz, Donta, Mededovic, Sakaguchi, Mallapragada (bib90) 2019; 58
Distler, Fournier, Grunewald, Polley, Seitz, Detsch (bib24) 2020; 8
Han, Li, Zhang, Han, Chang, Ding (bib4) 2019; 8
Major, Kowalczyk, Surmiak, Lojszczyk, Podgorski, Trzaskowska (bib66) 2020; 193
Erickson, Newsom, Fletcher, Feuer, Yu, RRodriguez-Fontan (bib69) 2020; 108
Bose, Vahabzadeh, Bandyopadhyay (bib1) 2013; 16
Raisian, Fallahi, Khiabani, Heidarizadeh, Azdoo (bib15) 2017; 12
Stogerer, Baumgartner, Hochwallner, Stampfl (bib50) 2020; 13
Bidgoli, Alemzadeh, Tamjid, Khafaji, Vossoughi (bib59) 2019; 103
Elhaj, Irgum (bib11) 2014; 6
Kolan, Leu, Hilmas, Brown, Velez (bib45) 2011; 3
Ouyang, Yao, Zhao, Sun (bib35) 2016; 8
Turner, Strong, Gold (bib21) 2014; 20
Gao, Xu, Liang, Li, Peng, Wu (bib53) 2019; 6
Ganbold, Heo, Koak, Kim, Cho (bib76) 2019; 12
Van Hoorick, Declercq, De Muynck, Houben, Van Hoorebeke, Cornelissen (bib58) 2015; 26
Fedore, Tse, Nam, Barton, Hatch (bib30) 2017; 20
Kim, Hwangbo, Koo, Kim (bib73) 2020; 21
Rubi-Sans, Recha-Sancho, Perez-Amodio, Mateos-Timoneda, Semino, Engel (bib78) 2019; 10
Mohamed, Masood, Bhowmik (bib22) 2015; 3
Lee, Hong, Kim, Kim (bib72) 2020; 250
Chen, Fang, Shie, Shen (bib52) 2019; 5
Takahashi, Yamanaka (bib5) 2006; 126
Geven, Grijpma (bib26) 2019; 2
Kanno, Nakatsuka, Saijo, Fujihara, Atsuhiko, Chung (bib60) 2016; 5
Choi, Park (bib37) 2018; 106
Yap, Chua, Dong, Liu, Zhang, Loh (bib46) 2015; 2
Choe, Oh, Seok, Park, Lee (bib83) 2019; 11
Chlebanowska, Tejchman, Sulkowski, Skrzypek, Majka (bib8) 2020; 21
Marro, Bandukwala, Mak (bib19) 2016; 45
Zeng, Pathak, Shi, Ran, Liang, Yan (bib44) 2020; 12
Luo, Li, Qin, Wa (bib86) 2018; 146
Ji, Dube, Chesterman, Fung, Liaw, Kohn (bib85) 2019; 7
Li (10.1016/j.reth.2021.01.007_bib82) 2020; 8
Chen (10.1016/j.reth.2021.01.007_bib52) 2019; 5
Lee (10.1016/j.reth.2021.01.007_bib72) 2020; 250
Van Hoorick (10.1016/j.reth.2021.01.007_bib58) 2015; 26
Chen (10.1016/j.reth.2021.01.007_bib7) 2020; 15
Distler (10.1016/j.reth.2021.01.007_bib24) 2020; 8
Jaber (10.1016/j.reth.2021.01.007_bib40) 2019; 6
Zeng (10.1016/j.reth.2021.01.007_bib44) 2020; 12
Gremare (10.1016/j.reth.2021.01.007_bib23) 2018; 106
Tsujimoto (10.1016/j.reth.2021.01.007_bib6) 2020; 31
Kolan (10.1016/j.reth.2021.01.007_bib45) 2011; 3
Degli Esposti (10.1016/j.reth.2021.01.007_bib14) 2019; 100
Fu (10.1016/j.reth.2021.01.007_bib75) 2019; 14
Moncal (10.1016/j.reth.2021.01.007_bib84) 2019; 105
Young (10.1016/j.reth.2021.01.007_bib61) 2019; 12
Carvalho (10.1016/j.reth.2021.01.007_bib67) 2019; 99
Marro (10.1016/j.reth.2021.01.007_bib19) 2016; 45
Xiao (10.1016/j.reth.2021.01.007_bib42) 2008; 222
Yap (10.1016/j.reth.2021.01.007_bib46) 2015; 2
Ganbold (10.1016/j.reth.2021.01.007_bib76) 2019; 12
Yan (10.1016/j.reth.2021.01.007_bib39) 2009; 14
Nakamatsu (10.1016/j.reth.2021.01.007_bib12) 2006; 7
Ji (10.1016/j.reth.2021.01.007_bib85) 2019; 7
Prasopthum (10.1016/j.reth.2021.01.007_bib13) 2018; 10
Bhargav (10.1016/j.reth.2021.01.007_bib51) 2020; 108
Kim (10.1016/j.reth.2021.01.007_bib73) 2020; 21
Zhang (10.1016/j.reth.2021.01.007_bib54) 2020; 30
Hamid (10.1016/j.reth.2021.01.007_bib29) 2011; 3
McMenamin (10.1016/j.reth.2021.01.007_bib62) 2020
Ganguli (10.1016/j.reth.2021.01.007_bib63) 2018; 20
Rubi-Sans (10.1016/j.reth.2021.01.007_bib78) 2019; 10
Landers (10.1016/j.reth.2021.01.007_bib32) 2000; 282
Stogerer (10.1016/j.reth.2021.01.007_bib50) 2020; 13
Erickson (10.1016/j.reth.2021.01.007_bib69) 2020; 108
Chaji (10.1016/j.reth.2021.01.007_bib77) 2020; 6
Tao (10.1016/j.reth.2021.01.007_bib65) 2019; 10
Garcia-Mato (10.1016/j.reth.2021.01.007_bib64) 2019; 9
Han (10.1016/j.reth.2021.01.007_bib4) 2019; 8
Uz (10.1016/j.reth.2021.01.007_bib90) 2019; 58
Elhaj (10.1016/j.reth.2021.01.007_bib11) 2014; 6
Ouyang (10.1016/j.reth.2021.01.007_bib35) 2016; 8
Lee (10.1016/j.reth.2021.01.007_bib38) 2020; 111
Cader (10.1016/j.reth.2021.01.007_bib48) 2019; 564
Turner (10.1016/j.reth.2021.01.007_bib21) 2014; 20
Song (10.1016/j.reth.2021.01.007_bib18) 2018; 13
Roskies (10.1016/j.reth.2021.01.007_bib41) 2016; 31
Prasopthum (10.1016/j.reth.2021.01.007_bib80) 2019; 11
Xu (10.1016/j.reth.2021.01.007_bib31) 2010; 2
Nowicki (10.1016/j.reth.2021.01.007_bib55) 2020; 17
Guillaume (10.1016/j.reth.2021.01.007_bib36) 2017; 54
Rajaram (10.1016/j.reth.2021.01.007_bib34) 2014; 1
Tian (10.1016/j.reth.2021.01.007_bib25) 2020; 10
Fedore (10.1016/j.reth.2021.01.007_bib30) 2017; 20
Wang (10.1016/j.reth.2021.01.007_bib27) 2004; 10
Major (10.1016/j.reth.2021.01.007_bib66) 2020; 193
Bose (10.1016/j.reth.2021.01.007_bib1) 2013; 16
Bidgoli (10.1016/j.reth.2021.01.007_bib59) 2019; 103
Takahashi (10.1016/j.reth.2021.01.007_bib5) 2006; 126
Van Damme (10.1016/j.reth.2021.01.007_bib56) 2020; 5
Luo (10.1016/j.reth.2021.01.007_bib86) 2018; 146
Zhou (10.1016/j.reth.2021.01.007_bib74) 2019; 13
Do (10.1016/j.reth.2021.01.007_bib10) 2015; 4
Samsonraj (10.1016/j.reth.2021.01.007_bib3) 2017; 6
Bollman (10.1016/j.reth.2021.01.007_bib88) 2020; 1463
Goodridge (10.1016/j.reth.2021.01.007_bib43) 2006; 220
Whiting (10.1016/j.reth.2021.01.007_bib2) 2015; 370
Billiet (10.1016/j.reth.2021.01.007_bib33) 2012; 33
Cheng (10.1016/j.reth.2021.01.007_bib47) 2020; 12
Choe (10.1016/j.reth.2021.01.007_bib83) 2019; 11
Gao (10.1016/j.reth.2021.01.007_bib53) 2019; 6
Zou (10.1016/j.reth.2021.01.007_bib81) 2020; 18
Yamanaka (10.1016/j.reth.2021.01.007_bib9) 2020; 27
Turnbull (10.1016/j.reth.2021.01.007_bib20) 2018; 3
Bellini (10.1016/j.reth.2021.01.007_bib28) 2002
Fahimipour (10.1016/j.reth.2021.01.007_bib89) 2019; 35
Athirasala (10.1016/j.reth.2021.01.007_bib87) 2018; 10
Chi (10.1016/j.reth.2021.01.007_bib71) 2020; 15
Vermeulen (10.1016/j.reth.2021.01.007_bib79) 2017; 43
Raisian (10.1016/j.reth.2021.01.007_bib15) 2017; 12
Geven (10.1016/j.reth.2021.01.007_bib26) 2019; 2
Kazimierczak (10.1016/j.reth.2021.01.007_bib68) 2019; 14
Aliabouzar (10.1016/j.reth.2021.01.007_bib17) 2018; 115
Choi (10.1016/j.reth.2021.01.007_bib37) 2018; 106
Mostafaei (10.1016/j.reth.2021.01.007_bib49) 2019; 102
Kanno (10.1016/j.reth.2021.01.007_bib60) 2016; 5
Mohamed (10.1016/j.reth.2021.01.007_bib22) 2015; 3
Liu (10.1016/j.reth.2021.01.007_bib70) 2019; 30
Chlebanowska (10.1016/j.reth.2021.01.007_bib8) 2020; 21
Simoneti (10.1016/j.reth.2021.01.007_bib16) 2020
De Maria (10.1016/j.reth.2021.01.007_bib57) 2015
References_xml – volume: 126
  start-page: 663
  year: 2006
  end-page: 676
  ident: bib5
  article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
  publication-title: Cell
– volume: 6
  start-page: 15653
  year: 2014
  end-page: 15666
  ident: bib11
  article-title: Monolithic space-filling porous materials from engineering plastics by thermally induced phase separation
  publication-title: ACS Appl Mater Interfaces
– volume: 12
  start-page: 25032
  year: 2020
  ident: bib44
  article-title: Indirect selective laser sintering-printed microporous biphasic calcium phosphate scaffold promotes endogenous bone regeneration via activation of ERK1/2 signaling
  publication-title: Biofabrication
– volume: 6
  start-page: 1900867
  year: 2019
  ident: bib53
  article-title: Osteochondral regeneration with 3D-printed biodegradable high-strength supramolecular polymer reinforced-gelatin hydrogel scaffolds
  publication-title: Adv Sci
– volume: 20
  start-page: 12
  year: 2017
  end-page: 17
  ident: bib30
  article-title: Analysis of polycaprolactone scaffolds fabricated via precision extrusion deposition for control of craniofacial tissue mineralization
  publication-title: Orthod Craniofac Res
– volume: 5
  start-page: 855
  year: 2020
  end-page: 864
  ident: bib56
  article-title: Indirect versus direct 3D printing of hydrogel scaffolds for adipose tissue regeneration
  publication-title: MRS Adv
– volume: 370
  start-page: 20140375
  year: 2015
  ident: bib2
  article-title: Progressing a human embryonic stem-cell-based regenerative medicine therapy towards the clinic
  publication-title: Philos Trans R Soc Lond B Biol Sci
– volume: 10
  start-page: 25002
  year: 2018
  ident: bib13
  article-title: Direct three-dimensional printing of polymeric scaffolds with nanofibrous topography
  publication-title: Biofabrication
– volume: 33
  start-page: 6020
  year: 2012
  end-page: 6041
  ident: bib33
  article-title: A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering
  publication-title: Biomaterials
– volume: 27
  start-page: 523
  year: 2020
  end-page: 531
  ident: bib9
  article-title: Pluripotent stem cell-based cell therapy-promise and challenges
  publication-title: Cell Stem Cell
– volume: 115
  start-page: 495
  year: 2018
  end-page: 506
  ident: bib17
  article-title: Effects of scaffold microstructure and low intensity pulsed ultrasound on chondrogenic differentiation of human mesenchymal stem cells
  publication-title: Biotechnol Bioeng
– volume: 106
  start-page: 887
  year: 2018
  end-page: 894
  ident: bib23
  article-title: Characterization of printed PLA scaffolds for bone tissue engineering
  publication-title: J Biomed Mater Res
– volume: 111
  start-page: 110844
  year: 2020
  ident: bib38
  article-title: Integrating cold atmospheric plasma with 3D printed bioactive nanocomposite scaffold for cartilage regeneration
  publication-title: Mater Sci Eng C Mater Biol Appl
– volume: 15
  start-page: 5825
  year: 2020
  end-page: 5838
  ident: bib71
  article-title: 3D-HA scaffold functionalized by extracellular matrix of stem cells promotes bone repair
  publication-title: Int J Nanomed
– volume: 3
  start-page: 34109
  year: 2011
  ident: bib29
  article-title: Fabrication of three-dimensional scaffolds using precision extrusion deposition with an assisted cooling device
  publication-title: Biofabrication
– volume: 2
  start-page: 25002
  year: 2010
  ident: bib31
  article-title: Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering
  publication-title: Biofabrication
– volume: 102
  start-page: 276
  year: 2019
  end-page: 288
  ident: bib49
  article-title: Microstructural evolution and resulting properties of differently sintered and heat-treated binder-jet 3D-printed Stellite 6
  publication-title: Mater Sci Eng C
– volume: 103
  start-page: 109688
  year: 2019
  ident: bib59
  article-title: Fabrication of hierarchically porous silk fibroin-bioactive glass composite scaffold via indirect 3D printing: effect of particle size on physico-mechanical properties and in vitro cellular behavior
  publication-title: Mater Sci Eng C Mater Biol Appl
– volume: 146
  start-page: 12
  year: 2018
  end-page: 19
  ident: bib86
  article-title: 3D printing of concentrated alginate/gelatin scaffolds with homogeneous nano apatite coating for bone tissue engineering
  publication-title: Mater Des
– volume: 11
  start-page: 18896
  year: 2019
  end-page: 18906
  ident: bib80
  article-title: 3D printed scaffolds with controlled micro-/nano-porous surface topography direct chondrogenic and osteogenic differentiation of mesenchymal stem cells
  publication-title: ACS Appl Mater Interfaces
– volume: 43
  start-page: 618
  year: 2017
  end-page: 624
  ident: bib79
  article-title: 3D bioprint me: a socioethical view of bioprinting human organs and tissues
  publication-title: J Med Ethics
– volume: 8
  start-page: 552
  year: 2020
  ident: bib24
  article-title: Polymer-bioactive glass composite filaments for 3D scaffold manufacturing by fused deposition modeling: fabrication and characterization
  publication-title: Front Bioeng Biotechnol
– volume: 15
  start-page: 1081
  year: 2020
  end-page: 1094
  ident: bib7
  article-title: Pluripotent stem cells for neurodegenerative disease modeling: an expert view on their value to drug discovery
  publication-title: Expet Opin Drug Discov
– volume: 31
  start-page: 107476
  year: 2020
  ident: bib6
  article-title: A modular differentiation system maps multiple human kidney lineages from pluripotent stem cells
  publication-title: Cell Rep
– volume: 282
  start-page: 17
  year: 2000
  end-page: 21
  ident: bib32
  article-title: Desktop manufacturing of complex objects, prototypes and biomedical scaffolds by means of computer-assisted design combined with computer-guided 3D plotting of polymers and reactive oligomers
  publication-title: Macromol Mater Eng
– volume: 14
  start-page: 6615
  year: 2019
  end-page: 6630
  ident: bib68
  article-title: Novel chitosan/agarose/hydroxyapatite nanocomposite scaffold for bone tissue engineering applications: comprehensive evaluation of biocompatibility and osteoinductivity with the use of osteoblasts and mesenchymal stem cells
  publication-title: Int J Nanomed
– volume: 564
  start-page: 359
  year: 2019
  end-page: 368
  ident: bib48
  article-title: Water-based 3D inkjet printing of an oral pharmaceutical dosage form
  publication-title: Int J Pharm
– volume: 108
  start-page: 2484
  year: 2020
  end-page: 2494
  ident: bib69
  article-title: In vivo degradation rate of alginate-chitosan hydrogels influences tissue repair following physeal injury
  publication-title: J Biomed Mater Res B Appl Biomater
– volume: 10
  start-page: 4805
  year: 2020
  end-page: 4816
  ident: bib25
  article-title: Study on antibacterial properties and cytocompatibility of EPL coated 3D printed PCL/HA composite scaffolds
  publication-title: RSC Adv
– volume: 3
  start-page: 42
  year: 2015
  end-page: 53
  ident: bib22
  article-title: Optimization of fused deposition modeling process parameters: a review of current research and future prospects
  publication-title: Adv Manuf
– volume: 105
  start-page: 110128
  year: 2019
  ident: bib84
  article-title: Collagen-infilled 3D printed scaffolds loaded with miR-148b-transfected bone marrow stem cells improve calvarial bone regeneration in rats
  publication-title: Mater Sci Eng C Mater Biol Appl
– volume: 21
  year: 2020
  ident: bib8
  article-title: Use of 3D organoids as a model to study idiopathic form of Parkinson’s disease
  publication-title: Int J Mol Sci
– volume: 9
  start-page: 17691
  year: 2019
  ident: bib64
  article-title: Craniosynostosis surgery: workflow based on virtual surgical planning, intraoperative navigation and 3D printed patient-specific guides and templates
  publication-title: Sci Rep
– volume: 100
  start-page: 286
  year: 2019
  end-page: 296
  ident: bib14
  article-title: Highly porous PHB-based bioactive scaffolds for bone tissue engineering by in situ synthesis of hydroxyapatite
  publication-title: Mater Sci Eng C Mater Biol Appl
– volume: 5
  start-page: 1
  year: 2016
  end-page: 8
  ident: bib60
  article-title: Computed tomographic evaluation of novel custom-made artificial bones, “CT-bone”, applied for maxillofacial reconstruction
  publication-title: Regen Ther
– volume: 11
  start-page: 23275
  year: 2019
  end-page: 23285
  ident: bib83
  article-title: Graphene oxide/alginate composites as novel bioinks for three-dimensional mesenchymal stem cell printing and bone regeneration applications
  publication-title: Nanoscale
– volume: 1463
  start-page: 37
  year: 2020
  end-page: 44
  ident: bib88
  article-title: Improvement of osseointegration by recruiting stem cells to titanium implants fabricated with 3D printing
  publication-title: Ann N Y Acad Sci
– volume: 250
  start-page: 116914
  year: 2020
  ident: bib72
  article-title: Bone-derived dECM/alginate bioink for fabricating a 3D cell-laden mesh structure for bone tissue engineering
  publication-title: Carbohydr Polym
– volume: 13
  start-page: 9595
  year: 2019
  end-page: 9606
  ident: bib74
  article-title: Hierarchically porous hydroxyapatite hybrid scaffold incorporated with reduced graphene oxide for rapid bone ingrowth and repair
  publication-title: ACS Nano
– volume: 7
  start-page: 3345
  year: 2006
  end-page: 3355
  ident: bib12
  article-title: Processing and characterization of porous structures from chitosan and starch for tissue engineering scaffolds
  publication-title: Biomacromolecules
– year: 2002
  ident: bib28
  article-title: Fused deposition of ceramics- A comprehensive experimental, analytical and computational study of material behavior, fabrication process and equipment design
– volume: 18
  start-page: 39
  year: 2020
  ident: bib81
  article-title: Preparation of antibacterial and osteoconductive 3D-printed PLGA/Cu(I)@ZIF-8 nanocomposite scaffolds for infected bone repair
  publication-title: J Nanobiotechnol
– volume: 6
  year: 2020
  ident: bib77
  article-title: Bioprinted three-dimensional cell-laden Hydrogels to evaluate adipocyte-breast cancer cell interactions
  publication-title: Gels
– volume: 10
  start-page: 42
  year: 2004
  end-page: 49
  ident: bib27
  article-title: Precision extruding deposition and characterization of cellular poly-ε-caprolactone tissue scaffolds
  publication-title: Rapid Prototyp J
– volume: 30
  year: 2020
  ident: bib54
  article-title: Direct 3D printed biomimetic scaffolds based on hydrogel microparticles for cell spheroid growth
  publication-title: Adv Funct Mater
– volume: 20
  start-page: 192
  year: 2014
  end-page: 204
  ident: bib21
  article-title: A review of melt extrusion additive manufacturing processes: I. Process design and modeling
  publication-title: Rapid Prototyping Journal
– volume: 99
  start-page: 479
  year: 2019
  end-page: 490
  ident: bib67
  article-title: Co-culture cell-derived extracellular matrix loaded electrospun microfibrous scaffolds for bone tissue engineering
  publication-title: Mater Sci Eng C Mater Biol Appl
– volume: 8
  start-page: 35020
  year: 2016
  ident: bib35
  article-title: Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells
  publication-title: Biofabrication
– volume: 31
  start-page: 132
  year: 2016
  end-page: 139
  ident: bib41
  article-title: Improving PEEK bioactivity for craniofacial reconstruction using a 3D printed scaffold embedded with mesenchymal stem cells
  publication-title: J Biomater Appl
– volume: 45
  start-page: 2
  year: 2016
  end-page: 9
  ident: bib19
  article-title: Three-dimensional printing and medical imaging: a review of the methods and applications
  publication-title: Curr Probl Diagn Radiol
– volume: 10
  year: 2019
  ident: bib78
  article-title: Development of a three-dimensional bioengineered platform for articular cartilage regeneration
  publication-title: Biomolecules
– volume: 8
  start-page: 824
  year: 2020
  ident: bib82
  article-title: 3D printing of cytocompatible graphene/alginate scaffolds for mimetic tissue constructs
  publication-title: Front Bioeng Biotechnol
– volume: 58
  start-page: 7421
  year: 2019
  end-page: 7427
  ident: bib90
  article-title: Development of gelatin and graphene-based nerve regeneration conduits using three-dimensional (3D) printing strategies for electrical transdifferentiation of mesenchymal stem cells
  publication-title: Ind Eng Chem Res
– volume: 1
  start-page: 194
  year: 2014
  end-page: 203
  ident: bib34
  article-title: Bioplotting alginate/hyaluronic acid hydrogel scaffolds with structural integrity and preserved schwann cell viability
  publication-title: 3D Print Addit Manuf
– volume: 13
  start-page: 505
  year: 2018
  end-page: 523
  ident: bib18
  article-title: Nano-biphasic calcium phosphate/polyvinyl alcohol composites with enhanced bioactivity for bone repair via low-temperature three-dimensional printing and loading with platelet-rich fibrin
  publication-title: Int J Nanomed
– volume: 12
  year: 2019
  ident: bib76
  article-title: Human stem cell responses and surface characteristics of 3D printing Co-Cr dental material
  publication-title: Materials
– volume: 6
  start-page: 2173
  year: 2017
  end-page: 2185
  ident: bib3
  article-title: Concise review: multifaceted characterization of human mesenchymal stem cells for use in regenerative medicine
  publication-title: Stem Cells Transl Med
– volume: 12
  start-page: 154
  year: 2017
  end-page: 158
  ident: bib15
  article-title: Customized titanium mesh based on the 3D printed model vs. Manual intraoperative bending of titanium mesh for reconstructing of orbital bone fracture: a randomized clinical trial
  publication-title: Rev Recent Clin Trials
– volume: 220
  start-page: 57
  year: 2006
  end-page: 68
  ident: bib43
  article-title: Indirect selective laser sintering of an apatite-mullite glass-ceramic for potential use in bone replacement applications
  publication-title: Proc Inst Mech Eng H
– start-page: 153
  year: 2015
  end-page: 164
  ident: bib57
  article-title: Indirect rapid prototyping for tissue engineering
  publication-title: Essentials of 3D biofabrication and translation
– volume: 16
  start-page: 496
  year: 2013
  end-page: 504
  ident: bib1
  article-title: Bone tissue engineering using 3D printing
  publication-title: Mater Today
– start-page: 1
  year: 2020
  end-page: 9
  ident: bib62
  article-title: The reproduction of human pathology specimens using three-dimensional (3D) printing technology for teaching purposes
  publication-title: Med Teach
– volume: 12
  start-page: 90
  year: 2019
  end-page: 96
  ident: bib61
  article-title: Three-dimensional printing of archived human fetal material for teaching purposes
  publication-title: Anat Sci Educ
– volume: 108
  start-page: 629
  year: 2020
  end-page: 637
  ident: bib51
  article-title: Taguchi’s methods to optimize the properties and bioactivity of 3D printed polycaprolactone/mineral trioxide aggregate scaffold: theoretical predictions and experimental validation
  publication-title: J Biomed Mater Res B Appl Biomater
– volume: 4
  start-page: 1742
  year: 2015
  end-page: 1762
  ident: bib10
  article-title: 3D printing of scaffolds for tissue regeneration applications
  publication-title: Adv Healthc Mater
– volume: 20
  start-page: 65
  year: 2018
  ident: bib63
  article-title: 3D printing for preoperative planning and surgical training: a review
  publication-title: Biomed Microdevices
– year: 2020
  ident: bib16
  article-title: Comparison of material properties and biofilm formation in interim single crowns obtained by 3D printing and conventional methods
  publication-title: J Prosthet Dent
– volume: 21
  year: 2020
  ident: bib73
  article-title: Fabrication of mechanically reinforced gelatin/hydroxyapatite bio-composite scaffolds by core/shell nozzle printing for bone tissue engineering
  publication-title: Int J Mol Sci
– volume: 14
  start-page: 1
  year: 2009
  end-page: 12
  ident: bib39
  article-title: Rapid prototyping and manufacturing technology: principle, representative technics, applications, and development trends
  publication-title: Tsinghua Sci Technol
– volume: 7
  start-page: 560
  year: 2019
  end-page: 570
  ident: bib85
  article-title: Polyester-based ink platform with tunable bioactivity for 3D printing of tissue engineering scaffolds
  publication-title: Biomater Sci
– volume: 30
  start-page: 53
  year: 2019
  ident: bib70
  article-title: Biomimetic poly(glycerol sebacate)/polycaprolactone blend scaffolds for cartilage tissue engineering
  publication-title: J Mater Sci Mater Med
– volume: 8
  year: 2019
  ident: bib4
  article-title: Mesenchymal stem cells for regenerative medicine
  publication-title: Cells
– volume: 2
  year: 2015
  ident: bib46
  article-title: Review of selective laser melting: materials and applications
  publication-title: Appl Phys Rev
– volume: 10
  year: 2019
  ident: bib65
  article-title: The applications of 3D printing for craniofacial tissue engineering
  publication-title: Micromachines
– volume: 193
  start-page: 111056
  year: 2020
  ident: bib66
  article-title: Patient specific implants for jawbone reconstruction after tumor resection
  publication-title: Colloids Surf B Biointerfaces
– volume: 35
  start-page: 990
  year: 2019
  end-page: 1006
  ident: bib89
  article-title: Enhancing cell seeding and osteogenesis of MSCs on 3D printed scaffolds through injectable BMP2 immobilized ECM-Mimetic gel
  publication-title: Dent Mater
– volume: 13
  year: 2020
  ident: bib50
  article-title: Bio-Inspired toughening of composites in 3D-printing
  publication-title: Materials
– volume: 5
  start-page: 197
  year: 2019
  ident: bib52
  article-title: The mussel-inspired assisted apatite mineralized on PolyJet material for artificial bone scaffold
  publication-title: Int J Bioprint
– volume: 2
  year: 2019
  ident: bib26
  article-title: Additive manufacturing of composite structures for the restoration of bone tissue
  publication-title: Multifunctional Materials
– volume: 3
  start-page: 25004
  year: 2011
  ident: bib45
  article-title: Fabrication of 13-93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering
  publication-title: Biofabrication
– volume: 10
  start-page: 24101
  year: 2018
  ident: bib87
  article-title: A dentin-derived hydrogel bioink for 3D bioprinting of cell laden scaffolds for regenerative dentistry
  publication-title: Biofabrication
– volume: 3
  start-page: 278
  year: 2018
  end-page: 314
  ident: bib20
  article-title: 3D bioactive composite scaffolds for bone tissue engineering
  publication-title: Bioact Mater
– volume: 12
  year: 2020
  ident: bib47
  article-title: Preparation and characterization of color photocurable resins for full-color material jetting additive manufacturing
  publication-title: Polymers
– volume: 17
  year: 2020
  ident: bib55
  article-title: 3D printing multiphasic osteochondral tissue constructs with nano to micro features via PCL based bioink
  publication-title: Bioprinting
– volume: 26
  start-page: 247
  year: 2015
  ident: bib58
  article-title: Indirect additive manufacturing as an elegant tool for the production of self-supporting low density gelatin scaffolds
  publication-title: J Mater Sci Mater Med
– volume: 6
  year: 2019
  ident: bib40
  article-title: Selective laser melting of Ti alloys and hydroxyapatite for tissue engineering: progress and challenges
  publication-title: Mater Res Express
– volume: 222
  start-page: 1107
  year: 2008
  end-page: 1114
  ident: bib42
  article-title: Indirect selective laser sintering of apatite-wollostonite glass-ceramic
  publication-title: Proc Inst Mech Eng H
– volume: 54
  start-page: 386
  year: 2017
  end-page: 398
  ident: bib36
  article-title: Surface-enrichment with hydroxyapatite nanoparticles in stereolithography-fabricated composite polymer scaffolds promotes bone repair
  publication-title: Acta Biomater
– volume: 106
  start-page: 3009
  year: 2018
  end-page: 3020
  ident: bib37
  article-title: Multifunctional effects of a modification of SLA titanium implant surface with strontium-containing nanostructures on immunoinflammatory and osteogenic cell function
  publication-title: J Biomed Mater Res
– volume: 14
  year: 2019
  ident: bib75
  article-title: 3D printing of layered mesoporous bioactive glass:sodium alginate-sodium alginate scaffolds with controllable dual-drug release behaviors
  publication-title: Biomed Mater
– volume: 20
  start-page: 65
  issue: 3
  year: 2018
  ident: 10.1016/j.reth.2021.01.007_bib63
  article-title: 3D printing for preoperative planning and surgical training: a review
  publication-title: Biomed Microdevices
  doi: 10.1007/s10544-018-0301-9
– volume: 14
  start-page: 6615
  year: 2019
  ident: 10.1016/j.reth.2021.01.007_bib68
  article-title: Novel chitosan/agarose/hydroxyapatite nanocomposite scaffold for bone tissue engineering applications: comprehensive evaluation of biocompatibility and osteoinductivity with the use of osteoblasts and mesenchymal stem cells
  publication-title: Int J Nanomed
  doi: 10.2147/IJN.S217245
– volume: 3
  start-page: 34109
  issue: 3
  year: 2011
  ident: 10.1016/j.reth.2021.01.007_bib29
  article-title: Fabrication of three-dimensional scaffolds using precision extrusion deposition with an assisted cooling device
  publication-title: Biofabrication
  doi: 10.1088/1758-5082/3/3/034109
– volume: 6
  issue: 8
  year: 2019
  ident: 10.1016/j.reth.2021.01.007_bib40
  article-title: Selective laser melting of Ti alloys and hydroxyapatite for tissue engineering: progress and challenges
  publication-title: Mater Res Express
  doi: 10.1088/2053-1591/ab1dee
– volume: 3
  start-page: 42
  issue: 1
  year: 2015
  ident: 10.1016/j.reth.2021.01.007_bib22
  article-title: Optimization of fused deposition modeling process parameters: a review of current research and future prospects
  publication-title: Adv Manuf
  doi: 10.1007/s40436-014-0097-7
– volume: 5
  start-page: 197
  issue: 2
  year: 2019
  ident: 10.1016/j.reth.2021.01.007_bib52
  article-title: The mussel-inspired assisted apatite mineralized on PolyJet material for artificial bone scaffold
  publication-title: Int J Bioprint
  doi: 10.18063/ijb.v5i2.197
– volume: 2
  issue: 2
  year: 2019
  ident: 10.1016/j.reth.2021.01.007_bib26
  article-title: Additive manufacturing of composite structures for the restoration of bone tissue
  publication-title: Multifunctional Materials
  doi: 10.1088/2399-7532/ab201f
– volume: 33
  start-page: 6020
  issue: 26
  year: 2012
  ident: 10.1016/j.reth.2021.01.007_bib33
  article-title: A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.04.050
– volume: 6
  start-page: 1900867
  issue: 15
  year: 2019
  ident: 10.1016/j.reth.2021.01.007_bib53
  article-title: Osteochondral regeneration with 3D-printed biodegradable high-strength supramolecular polymer reinforced-gelatin hydrogel scaffolds
  publication-title: Adv Sci
  doi: 10.1002/advs.201900867
– volume: 105
  start-page: 110128
  year: 2019
  ident: 10.1016/j.reth.2021.01.007_bib84
  article-title: Collagen-infilled 3D printed scaffolds loaded with miR-148b-transfected bone marrow stem cells improve calvarial bone regeneration in rats
  publication-title: Mater Sci Eng C Mater Biol Appl
  doi: 10.1016/j.msec.2019.110128
– volume: 106
  start-page: 887
  issue: 4
  year: 2018
  ident: 10.1016/j.reth.2021.01.007_bib23
  article-title: Characterization of printed PLA scaffolds for bone tissue engineering
  publication-title: J Biomed Mater Res
  doi: 10.1002/jbm.a.36289
– volume: 12
  start-page: 90
  issue: 1
  year: 2019
  ident: 10.1016/j.reth.2021.01.007_bib61
  article-title: Three-dimensional printing of archived human fetal material for teaching purposes
  publication-title: Anat Sci Educ
  doi: 10.1002/ase.1805
– year: 2020
  ident: 10.1016/j.reth.2021.01.007_bib16
  article-title: Comparison of material properties and biofilm formation in interim single crowns obtained by 3D printing and conventional methods
  publication-title: J Prosthet Dent
  doi: 10.1016/j.prosdent.2020.06.026
– volume: 6
  issue: 1
  year: 2020
  ident: 10.1016/j.reth.2021.01.007_bib77
  article-title: Bioprinted three-dimensional cell-laden Hydrogels to evaluate adipocyte-breast cancer cell interactions
  publication-title: Gels
  doi: 10.3390/gels6010010
– volume: 10
  issue: 1
  year: 2019
  ident: 10.1016/j.reth.2021.01.007_bib78
  article-title: Development of a three-dimensional bioengineered platform for articular cartilage regeneration
  publication-title: Biomolecules
  doi: 10.3390/biom10010052
– volume: 8
  start-page: 35020
  issue: 3
  year: 2016
  ident: 10.1016/j.reth.2021.01.007_bib35
  article-title: Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/8/3/035020
– volume: 7
  start-page: 560
  issue: 2
  year: 2019
  ident: 10.1016/j.reth.2021.01.007_bib85
  article-title: Polyester-based ink platform with tunable bioactivity for 3D printing of tissue engineering scaffolds
  publication-title: Biomater Sci
  doi: 10.1039/C8BM01269E
– volume: 8
  issue: 8
  year: 2019
  ident: 10.1016/j.reth.2021.01.007_bib4
  article-title: Mesenchymal stem cells for regenerative medicine
  publication-title: Cells
  doi: 10.3390/cells8080886
– volume: 10
  start-page: 4805
  issue: 8
  year: 2020
  ident: 10.1016/j.reth.2021.01.007_bib25
  article-title: Study on antibacterial properties and cytocompatibility of EPL coated 3D printed PCL/HA composite scaffolds
  publication-title: RSC Adv
  doi: 10.1039/C9RA10275B
– volume: 27
  start-page: 523
  issue: 4
  year: 2020
  ident: 10.1016/j.reth.2021.01.007_bib9
  article-title: Pluripotent stem cell-based cell therapy-promise and challenges
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2020.09.014
– volume: 45
  start-page: 2
  issue: 1
  year: 2016
  ident: 10.1016/j.reth.2021.01.007_bib19
  article-title: Three-dimensional printing and medical imaging: a review of the methods and applications
  publication-title: Curr Probl Diagn Radiol
  doi: 10.1067/j.cpradiol.2015.07.009
– volume: 4
  start-page: 1742
  issue: 12
  year: 2015
  ident: 10.1016/j.reth.2021.01.007_bib10
  article-title: 3D printing of scaffolds for tissue regeneration applications
  publication-title: Adv Healthc Mater
  doi: 10.1002/adhm.201500168
– volume: 3
  start-page: 278
  issue: 3
  year: 2018
  ident: 10.1016/j.reth.2021.01.007_bib20
  article-title: 3D bioactive composite scaffolds for bone tissue engineering
  publication-title: Bioact Mater
  doi: 10.1016/j.bioactmat.2017.10.001
– volume: 1
  start-page: 194
  issue: 4
  year: 2014
  ident: 10.1016/j.reth.2021.01.007_bib34
  article-title: Bioplotting alginate/hyaluronic acid hydrogel scaffolds with structural integrity and preserved schwann cell viability
  publication-title: 3D Print Addit Manuf
  doi: 10.1089/3dp.2014.0006
– volume: 193
  start-page: 111056
  year: 2020
  ident: 10.1016/j.reth.2021.01.007_bib66
  article-title: Patient specific implants for jawbone reconstruction after tumor resection
  publication-title: Colloids Surf B Biointerfaces
  doi: 10.1016/j.colsurfb.2020.111056
– volume: 13
  issue: 21
  year: 2020
  ident: 10.1016/j.reth.2021.01.007_bib50
  article-title: Bio-Inspired toughening of composites in 3D-printing
  publication-title: Materials
  doi: 10.3390/ma13214714
– volume: 106
  start-page: 3009
  issue: 12
  year: 2018
  ident: 10.1016/j.reth.2021.01.007_bib37
  article-title: Multifunctional effects of a modification of SLA titanium implant surface with strontium-containing nanostructures on immunoinflammatory and osteogenic cell function
  publication-title: J Biomed Mater Res
  doi: 10.1002/jbm.a.36490
– volume: 30
  start-page: 53
  issue: 5
  year: 2019
  ident: 10.1016/j.reth.2021.01.007_bib70
  article-title: Biomimetic poly(glycerol sebacate)/polycaprolactone blend scaffolds for cartilage tissue engineering
  publication-title: J Mater Sci Mater Med
  doi: 10.1007/s10856-019-6257-3
– volume: 126
  start-page: 663
  issue: 4
  year: 2006
  ident: 10.1016/j.reth.2021.01.007_bib5
  article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
  publication-title: Cell
  doi: 10.1016/j.cell.2006.07.024
– volume: 3
  start-page: 25004
  issue: 2
  year: 2011
  ident: 10.1016/j.reth.2021.01.007_bib45
  article-title: Fabrication of 13-93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering
  publication-title: Biofabrication
  doi: 10.1088/1758-5082/3/2/025004
– volume: 15
  start-page: 5825
  year: 2020
  ident: 10.1016/j.reth.2021.01.007_bib71
  article-title: 3D-HA scaffold functionalized by extracellular matrix of stem cells promotes bone repair
  publication-title: Int J Nanomed
  doi: 10.2147/IJN.S259678
– volume: 108
  start-page: 629
  issue: 3
  year: 2020
  ident: 10.1016/j.reth.2021.01.007_bib51
  article-title: Taguchi’s methods to optimize the properties and bioactivity of 3D printed polycaprolactone/mineral trioxide aggregate scaffold: theoretical predictions and experimental validation
  publication-title: J Biomed Mater Res B Appl Biomater
  doi: 10.1002/jbm.b.34417
– volume: 35
  start-page: 990
  issue: 7
  year: 2019
  ident: 10.1016/j.reth.2021.01.007_bib89
  article-title: Enhancing cell seeding and osteogenesis of MSCs on 3D printed scaffolds through injectable BMP2 immobilized ECM-Mimetic gel
  publication-title: Dent Mater
  doi: 10.1016/j.dental.2019.04.004
– volume: 21
  issue: 9
  year: 2020
  ident: 10.1016/j.reth.2021.01.007_bib73
  article-title: Fabrication of mechanically reinforced gelatin/hydroxyapatite bio-composite scaffolds by core/shell nozzle printing for bone tissue engineering
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms21093401
– volume: 102
  start-page: 276
  year: 2019
  ident: 10.1016/j.reth.2021.01.007_bib49
  article-title: Microstructural evolution and resulting properties of differently sintered and heat-treated binder-jet 3D-printed Stellite 6
  publication-title: Mater Sci Eng C
  doi: 10.1016/j.msec.2019.04.011
– volume: 17
  year: 2020
  ident: 10.1016/j.reth.2021.01.007_bib55
  article-title: 3D printing multiphasic osteochondral tissue constructs with nano to micro features via PCL based bioink
  publication-title: Bioprinting
  doi: 10.1016/j.bprint.2019.e00066
– volume: 13
  start-page: 505
  year: 2018
  ident: 10.1016/j.reth.2021.01.007_bib18
  article-title: Nano-biphasic calcium phosphate/polyvinyl alcohol composites with enhanced bioactivity for bone repair via low-temperature three-dimensional printing and loading with platelet-rich fibrin
  publication-title: Int J Nanomed
  doi: 10.2147/IJN.S152105
– volume: 30
  issue: 13
  year: 2020
  ident: 10.1016/j.reth.2021.01.007_bib54
  article-title: Direct 3D printed biomimetic scaffolds based on hydrogel microparticles for cell spheroid growth
  publication-title: Adv Funct Mater
– volume: 146
  start-page: 12
  year: 2018
  ident: 10.1016/j.reth.2021.01.007_bib86
  article-title: 3D printing of concentrated alginate/gelatin scaffolds with homogeneous nano apatite coating for bone tissue engineering
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2018.03.002
– volume: 12
  start-page: 154
  issue: 3
  year: 2017
  ident: 10.1016/j.reth.2021.01.007_bib15
  article-title: Customized titanium mesh based on the 3D printed model vs. Manual intraoperative bending of titanium mesh for reconstructing of orbital bone fracture: a randomized clinical trial
  publication-title: Rev Recent Clin Trials
  doi: 10.2174/1574887112666170821165206
– volume: 9
  start-page: 17691
  issue: 1
  year: 2019
  ident: 10.1016/j.reth.2021.01.007_bib64
  article-title: Craniosynostosis surgery: workflow based on virtual surgical planning, intraoperative navigation and 3D printed patient-specific guides and templates
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-54148-4
– volume: 10
  issue: 7
  year: 2019
  ident: 10.1016/j.reth.2021.01.007_bib65
  article-title: The applications of 3D printing for craniofacial tissue engineering
  publication-title: Micromachines
  doi: 10.3390/mi10070480
– volume: 99
  start-page: 479
  year: 2019
  ident: 10.1016/j.reth.2021.01.007_bib67
  article-title: Co-culture cell-derived extracellular matrix loaded electrospun microfibrous scaffolds for bone tissue engineering
  publication-title: Mater Sci Eng C Mater Biol Appl
  doi: 10.1016/j.msec.2019.01.127
– year: 2002
  ident: 10.1016/j.reth.2021.01.007_bib28
– volume: 103
  start-page: 109688
  year: 2019
  ident: 10.1016/j.reth.2021.01.007_bib59
  article-title: Fabrication of hierarchically porous silk fibroin-bioactive glass composite scaffold via indirect 3D printing: effect of particle size on physico-mechanical properties and in vitro cellular behavior
  publication-title: Mater Sci Eng C Mater Biol Appl
  doi: 10.1016/j.msec.2019.04.067
– volume: 8
  start-page: 824
  year: 2020
  ident: 10.1016/j.reth.2021.01.007_bib82
  article-title: 3D printing of cytocompatible graphene/alginate scaffolds for mimetic tissue constructs
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2020.00824
– volume: 18
  start-page: 39
  issue: 1
  year: 2020
  ident: 10.1016/j.reth.2021.01.007_bib81
  article-title: Preparation of antibacterial and osteoconductive 3D-printed PLGA/Cu(I)@ZIF-8 nanocomposite scaffolds for infected bone repair
  publication-title: J Nanobiotechnol
  doi: 10.1186/s12951-020-00594-6
– volume: 10
  start-page: 24101
  issue: 2
  year: 2018
  ident: 10.1016/j.reth.2021.01.007_bib87
  article-title: A dentin-derived hydrogel bioink for 3D bioprinting of cell laden scaffolds for regenerative dentistry
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/aa9b4e
– volume: 26
  start-page: 247
  issue: 10
  year: 2015
  ident: 10.1016/j.reth.2021.01.007_bib58
  article-title: Indirect additive manufacturing as an elegant tool for the production of self-supporting low density gelatin scaffolds
  publication-title: J Mater Sci Mater Med
  doi: 10.1007/s10856-015-5566-4
– volume: 21
  issue: 3
  year: 2020
  ident: 10.1016/j.reth.2021.01.007_bib8
  article-title: Use of 3D organoids as a model to study idiopathic form of Parkinson’s disease
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms21030694
– volume: 31
  start-page: 132
  issue: 1
  year: 2016
  ident: 10.1016/j.reth.2021.01.007_bib41
  article-title: Improving PEEK bioactivity for craniofacial reconstruction using a 3D printed scaffold embedded with mesenchymal stem cells
  publication-title: J Biomater Appl
  doi: 10.1177/0885328216638636
– volume: 12
  start-page: 25032
  issue: 2
  year: 2020
  ident: 10.1016/j.reth.2021.01.007_bib44
  article-title: Indirect selective laser sintering-printed microporous biphasic calcium phosphate scaffold promotes endogenous bone regeneration via activation of ERK1/2 signaling
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/ab78ed
– volume: 2
  issue: 4
  year: 2015
  ident: 10.1016/j.reth.2021.01.007_bib46
  article-title: Review of selective laser melting: materials and applications
  publication-title: Appl Phys Rev
  doi: 10.1063/1.4935926
– volume: 15
  start-page: 1081
  issue: 9
  year: 2020
  ident: 10.1016/j.reth.2021.01.007_bib7
  article-title: Pluripotent stem cells for neurodegenerative disease modeling: an expert view on their value to drug discovery
  publication-title: Expet Opin Drug Discov
  doi: 10.1080/17460441.2020.1767579
– volume: 20
  start-page: 12
  issue: Suppl 1
  year: 2017
  ident: 10.1016/j.reth.2021.01.007_bib30
  article-title: Analysis of polycaprolactone scaffolds fabricated via precision extrusion deposition for control of craniofacial tissue mineralization
  publication-title: Orthod Craniofac Res
  doi: 10.1111/ocr.12159
– start-page: 153
  year: 2015
  ident: 10.1016/j.reth.2021.01.007_bib57
  article-title: Indirect rapid prototyping for tissue engineering
– volume: 10
  start-page: 42
  issue: 1
  year: 2004
  ident: 10.1016/j.reth.2021.01.007_bib27
  article-title: Precision extruding deposition and characterization of cellular poly-ε-caprolactone tissue scaffolds
  publication-title: Rapid Prototyp J
  doi: 10.1108/13552540410512525
– volume: 564
  start-page: 359
  year: 2019
  ident: 10.1016/j.reth.2021.01.007_bib48
  article-title: Water-based 3D inkjet printing of an oral pharmaceutical dosage form
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2019.04.026
– volume: 370
  start-page: 20140375
  issue: 1680
  year: 2015
  ident: 10.1016/j.reth.2021.01.007_bib2
  article-title: Progressing a human embryonic stem-cell-based regenerative medicine therapy towards the clinic
  publication-title: Philos Trans R Soc Lond B Biol Sci
  doi: 10.1098/rstb.2014.0375
– volume: 7
  start-page: 3345
  issue: 12
  year: 2006
  ident: 10.1016/j.reth.2021.01.007_bib12
  article-title: Processing and characterization of porous structures from chitosan and starch for tissue engineering scaffolds
  publication-title: Biomacromolecules
  doi: 10.1021/bm0605311
– volume: 12
  issue: 3
  year: 2020
  ident: 10.1016/j.reth.2021.01.007_bib47
  article-title: Preparation and characterization of color photocurable resins for full-color material jetting additive manufacturing
  publication-title: Polymers
  doi: 10.3390/polym12030650
– volume: 14
  year: 2019
  ident: 10.1016/j.reth.2021.01.007_bib75
  article-title: 3D printing of layered mesoporous bioactive glass:sodium alginate-sodium alginate scaffolds with controllable dual-drug release behaviors
  publication-title: Biomed Mater
  doi: 10.1088/1748-605X/ab4166
– volume: 6
  start-page: 2173
  issue: 12
  year: 2017
  ident: 10.1016/j.reth.2021.01.007_bib3
  article-title: Concise review: multifaceted characterization of human mesenchymal stem cells for use in regenerative medicine
  publication-title: Stem Cells Transl Med
  doi: 10.1002/sctm.17-0129
– volume: 10
  start-page: 25002
  issue: 2
  year: 2018
  ident: 10.1016/j.reth.2021.01.007_bib13
  article-title: Direct three-dimensional printing of polymeric scaffolds with nanofibrous topography
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/aaa15b
– volume: 220
  start-page: 57
  issue: 1
  year: 2006
  ident: 10.1016/j.reth.2021.01.007_bib43
  article-title: Indirect selective laser sintering of an apatite-mullite glass-ceramic for potential use in bone replacement applications
  publication-title: Proc Inst Mech Eng H
  doi: 10.1243/095441105X69051
– volume: 115
  start-page: 495
  issue: 2
  year: 2018
  ident: 10.1016/j.reth.2021.01.007_bib17
  article-title: Effects of scaffold microstructure and low intensity pulsed ultrasound on chondrogenic differentiation of human mesenchymal stem cells
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.26480
– volume: 222
  start-page: 1107
  issue: 7
  year: 2008
  ident: 10.1016/j.reth.2021.01.007_bib42
  article-title: Indirect selective laser sintering of apatite-wollostonite glass-ceramic
  publication-title: Proc Inst Mech Eng H
  doi: 10.1243/09544119JEIM411
– volume: 11
  start-page: 23275
  issue: 48
  year: 2019
  ident: 10.1016/j.reth.2021.01.007_bib83
  article-title: Graphene oxide/alginate composites as novel bioinks for three-dimensional mesenchymal stem cell printing and bone regeneration applications
  publication-title: Nanoscale
  doi: 10.1039/C9NR07643C
– volume: 58
  start-page: 7421
  issue: 18
  year: 2019
  ident: 10.1016/j.reth.2021.01.007_bib90
  article-title: Development of gelatin and graphene-based nerve regeneration conduits using three-dimensional (3D) printing strategies for electrical transdifferentiation of mesenchymal stem cells
  publication-title: Ind Eng Chem Res
  doi: 10.1021/acs.iecr.8b05537
– volume: 108
  start-page: 2484
  issue: 6
  year: 2020
  ident: 10.1016/j.reth.2021.01.007_bib69
  article-title: In vivo degradation rate of alginate-chitosan hydrogels influences tissue repair following physeal injury
  publication-title: J Biomed Mater Res B Appl Biomater
  doi: 10.1002/jbm.b.34580
– volume: 43
  start-page: 618
  issue: 9
  year: 2017
  ident: 10.1016/j.reth.2021.01.007_bib79
  article-title: 3D bioprint me: a socioethical view of bioprinting human organs and tissues
  publication-title: J Med Ethics
  doi: 10.1136/medethics-2015-103347
– volume: 282
  start-page: 17
  issue: 1
  year: 2000
  ident: 10.1016/j.reth.2021.01.007_bib32
  article-title: Desktop manufacturing of complex objects, prototypes and biomedical scaffolds by means of computer-assisted design combined with computer-guided 3D plotting of polymers and reactive oligomers
  publication-title: Macromol Mater Eng
  doi: 10.1002/1439-2054(20001001)282:1<17::AID-MAME17>3.0.CO;2-8
– start-page: 1
  year: 2020
  ident: 10.1016/j.reth.2021.01.007_bib62
  article-title: The reproduction of human pathology specimens using three-dimensional (3D) printing technology for teaching purposes
  publication-title: Med Teach
  doi: 10.1080/0142159X.2020.1841127
– volume: 6
  start-page: 15653
  issue: 18
  year: 2014
  ident: 10.1016/j.reth.2021.01.007_bib11
  article-title: Monolithic space-filling porous materials from engineering plastics by thermally induced phase separation
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/am502977z
– volume: 8
  start-page: 552
  year: 2020
  ident: 10.1016/j.reth.2021.01.007_bib24
  article-title: Polymer-bioactive glass composite filaments for 3D scaffold manufacturing by fused deposition modeling: fabrication and characterization
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2020.00552
– volume: 20
  start-page: 192
  issue: 3
  year: 2014
  ident: 10.1016/j.reth.2021.01.007_bib21
  article-title: A review of melt extrusion additive manufacturing processes: I. Process design and modeling
  publication-title: Rapid Prototyping Journal
  doi: 10.1108/RPJ-01-2013-0012
– volume: 2
  start-page: 25002
  issue: 2
  year: 2010
  ident: 10.1016/j.reth.2021.01.007_bib31
  article-title: Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering
  publication-title: Biofabrication
  doi: 10.1088/1758-5082/2/2/025002
– volume: 14
  start-page: 1
  issue: S1
  year: 2009
  ident: 10.1016/j.reth.2021.01.007_bib39
  article-title: Rapid prototyping and manufacturing technology: principle, representative technics, applications, and development trends
  publication-title: Tsinghua Sci Technol
  doi: 10.1016/S1007-0214(09)70059-8
– volume: 250
  start-page: 116914
  year: 2020
  ident: 10.1016/j.reth.2021.01.007_bib72
  article-title: Bone-derived dECM/alginate bioink for fabricating a 3D cell-laden mesh structure for bone tissue engineering
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2020.116914
– volume: 16
  start-page: 496
  issue: 12
  year: 2013
  ident: 10.1016/j.reth.2021.01.007_bib1
  article-title: Bone tissue engineering using 3D printing
  publication-title: Mater Today
  doi: 10.1016/j.mattod.2013.11.017
– volume: 100
  start-page: 286
  year: 2019
  ident: 10.1016/j.reth.2021.01.007_bib14
  article-title: Highly porous PHB-based bioactive scaffolds for bone tissue engineering by in situ synthesis of hydroxyapatite
  publication-title: Mater Sci Eng C Mater Biol Appl
  doi: 10.1016/j.msec.2019.03.014
– volume: 12
  issue: 20
  year: 2019
  ident: 10.1016/j.reth.2021.01.007_bib76
  article-title: Human stem cell responses and surface characteristics of 3D printing Co-Cr dental material
  publication-title: Materials
  doi: 10.3390/ma12203419
– volume: 54
  start-page: 386
  year: 2017
  ident: 10.1016/j.reth.2021.01.007_bib36
  article-title: Surface-enrichment with hydroxyapatite nanoparticles in stereolithography-fabricated composite polymer scaffolds promotes bone repair
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2017.03.006
– volume: 5
  start-page: 855
  issue: 17
  year: 2020
  ident: 10.1016/j.reth.2021.01.007_bib56
  article-title: Indirect versus direct 3D printing of hydrogel scaffolds for adipose tissue regeneration
  publication-title: MRS Adv
  doi: 10.1557/adv.2020.117
– volume: 5
  start-page: 1
  year: 2016
  ident: 10.1016/j.reth.2021.01.007_bib60
  article-title: Computed tomographic evaluation of novel custom-made artificial bones, “CT-bone”, applied for maxillofacial reconstruction
  publication-title: Regen Ther
  doi: 10.1016/j.reth.2016.05.002
– volume: 11
  start-page: 18896
  year: 2019
  ident: 10.1016/j.reth.2021.01.007_bib80
  article-title: 3D printed scaffolds with controlled micro-/nano-porous surface topography direct chondrogenic and osteogenic differentiation of mesenchymal stem cells
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.9b01472
– volume: 1463
  start-page: 37
  issue: 1
  year: 2020
  ident: 10.1016/j.reth.2021.01.007_bib88
  article-title: Improvement of osseointegration by recruiting stem cells to titanium implants fabricated with 3D printing
  publication-title: Ann N Y Acad Sci
  doi: 10.1111/nyas.14251
– volume: 31
  start-page: 107476
  issue: 1
  year: 2020
  ident: 10.1016/j.reth.2021.01.007_bib6
  article-title: A modular differentiation system maps multiple human kidney lineages from pluripotent stem cells
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2020.03.040
– volume: 111
  start-page: 110844
  year: 2020
  ident: 10.1016/j.reth.2021.01.007_bib38
  article-title: Integrating cold atmospheric plasma with 3D printed bioactive nanocomposite scaffold for cartilage regeneration
  publication-title: Mater Sci Eng C Mater Biol Appl
  doi: 10.1016/j.msec.2020.110844
– volume: 13
  start-page: 9595
  issue: 8
  year: 2019
  ident: 10.1016/j.reth.2021.01.007_bib74
  article-title: Hierarchically porous hydroxyapatite hybrid scaffold incorporated with reduced graphene oxide for rapid bone ingrowth and repair
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b04723
SSID ssj0001851298
Score 2.5174048
SecondaryResourceType review_article
Snippet Due to traffic accidents, injuries, burns, congenital malformations and other reasons, a large number of patients with tissue or organ defects need urgent...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 63
SubjectTerms 3D printing
Bone tissue engineering
Review
Scaffold materials
Stem cells
Title Applications of 3D printed bone tissue engineering scaffolds in the stem cell field
URI https://dx.doi.org/10.1016/j.reth.2021.01.007
https://www.ncbi.nlm.nih.gov/pubmed/33598507
https://www.proquest.com/docview/2491063269
https://pubmed.ncbi.nlm.nih.gov/PMC7868584
https://doaj.org/article/1338776162464240813be1e4675a7449
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYv4dn0RQbxIsY80j-P6QhQFUcFbaNIEV7Qrbj34751Ju2tXQS9C6aFN2yQz6XyTTL4hZA-telkKHmWM-4hJayJlwEtRjKdeWAk_TlzRvbrm5_fs4iF_6KT6wpiwhh646bhD9KEE-No8ZQCVGViwzLjEwfjOC8FY2LoHNq_jTIXZFYmGLKSjA4QRZWnM2h0zTXDXm6txJSJNAmcn5pLtWKVA3j9lnH6Cz-8xlB2jdLZA5ls0SftNKxbJjKuWyHK_Ak_65YPu0xDfGSbOl8ltv7NWTYeeZicUZ_UAclIzrBytgwyo-2IopCNbeD98Lkd0UFGAihRpnylO9tMQ-rZC7s9O747PozalQmR5ktSRsKnNHO7HtbEvVBHHlomUeeONSgGMyNiawnNA3FleeKtKCeYe5JwUxinHVbZKZiuo0jqhRkmRem6dN4CpRGmwhJKxU1xK71SPJOMu1bblG8e0F896HFj2pFEMGsWgYzhi0SMHk2deG7aNX0sfoaQmJZEpO1wA_dGt_ui_9KdH8rGcdQs6GjABrxr8-vHdsVJoGJHY80Xlhu8jDQ4t-NkAi-Hda42STKqYIWFijk-LKfWZasP0nWrwGFi_hcRUAWzjPxq9SeawKU0s3RaZrd_e3TaAq9rshHEE58sb-QmOSR3I
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applications+of+3D+printed+bone+tissue+engineering+scaffolds+in+the+stem+cell+field&rft.jtitle=Regenerative+therapy&rft.au=Su%2C+Xin&rft.au=Wang%2C+Ting&rft.au=Guo%2C+Shu&rft.date=2021-03-01&rft.pub=Japanese+Society+for+Regenerative+Medicine&rft.eissn=2352-3204&rft.volume=16&rft.spage=63&rft.epage=72&rft_id=info:doi/10.1016%2Fj.reth.2021.01.007&rft_id=info%3Apmid%2F33598507&rft.externalDocID=PMC7868584
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-3204&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-3204&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-3204&client=summon