Role of an upstream open reading frame in mediating arginine-specific translational control in Neurospora crassa

The Neurospora crassa arg-2 transcript contains an upstream open reading frame (uORF) specifying a 24-residue leader peptide and is subject to a novel form of negative translational regulation in response to arginine. The role of the arg-2 uORF in arginine-specific negative regulation was investigat...

Full description

Saved in:
Bibliographic Details
Published inJournal of Bacteriology Vol. 178; no. 8; pp. 2172 - 2177
Main Authors Luo, Z. (Oregon Graduate Institute of Science and Technology, Portland, OR.), Sachs, M.S
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.04.1996
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The Neurospora crassa arg-2 transcript contains an upstream open reading frame (uORF) specifying a 24-residue leader peptide and is subject to a novel form of negative translational regulation in response to arginine. The role of the arg-2 uORF in arginine-specific negative regulation was investigated by using translational fusions of wild-type and mutant arg-2 sequences to the Escherichia coli lacZ reporter gene specifying beta-galactosidase. The wild-type uORF conferred Arg-specific regulation on the reporter gene in N. crassa, but mutated or truncated uORFs did not, as determined by measurements of beta-galactosidase activity produced in N. crassa strains expressing arg-2-lacZ fusion genes. All effects on reporter gene expression were posttranscriptional, as determined by measurement of RNA levels. Both sequence-dependent and sequence-independent effects of uORFs were observed. Genes containing the wild-type uORF or a 21-codon mutated uORF showed reduced translation in comparison with that of a gene lacking a uORF. Both uORF-containing transcripts showed reduced association with polysomes relative to transcripts lacking a uORF, but only the transcript with the wild-type uORF showed a reduced average number of ribosomes associated with it in response to arginine addition. Direct translational fusions between uORF sequences and lacZ sequences indicated that the uORF is translated. Overlapping the uORF with the lacZ initiation codon indicated that ribosome reinitiation at a downstream start codon is not integral to uORF-mediated, Arg-specific translational regulation. These studies provide direct biochemical evidence for arg-2 uORF function in translational control
Bibliography:9613115
F30
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0021-9193
1098-5530
1067-8832
DOI:10.1128/jb.178.8.2172-2177.1996