Limits on gas impermeability of graphene

Despite being only one-atom thick, defect-free graphene is considered to be completely impermeable to all gases and liquids 1 – 10 . This conclusion is based on theory 3 – 8 and supported by experiments 1 , 9 , 10 that could not detect gas permeation through micrometre-size membranes within a detect...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 579; no. 7798; pp. 229 - 232
Main Authors Sun, P. Z., Yang, Q., Kuang, W. J., Stebunov, Y. V., Xiong, W. Q., Yu, J., Nair, R. R., Katsnelson, M. I., Yuan, S. J., Grigorieva, I. V., Lozada-Hidalgo, M., Wang, F. C., Geim, A. K.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.03.2020
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Despite being only one-atom thick, defect-free graphene is considered to be completely impermeable to all gases and liquids 1 – 10 . This conclusion is based on theory 3 – 8 and supported by experiments 1 , 9 , 10 that could not detect gas permeation through micrometre-size membranes within a detection limit of 10 5 to 10 6 atoms per second. Here, using small monocrystalline containers tightly sealed with graphene, we show that defect-free graphene is impermeable with an accuracy of eight to nine orders of magnitude higher than in the previous experiments. We are capable of discerning (but did not observe) permeation of just a few helium atoms per hour, and this detection limit is also valid for all other gases tested (neon, nitrogen, oxygen, argon, krypton and xenon), except for hydrogen. Hydrogen shows noticeable permeation, even though its molecule is larger than helium and should experience a higher energy barrier. This puzzling observation is attributed to a two-stage process that involves dissociation of molecular hydrogen at catalytically active graphene ripples, followed by adsorbed atoms flipping to the other side of the graphene sheet with a relatively low activation energy of about 1.0 electronvolt, a value close to that previously reported for proton transport 11 , 12 . Our work provides a key reference for the impermeability of two-dimensional materials and is important from a fundamental perspective and for their potential applications. Graphene is shown to be impermeable to helium and several other gases, except for hydrogen, which is attributed to the strong catalytic activity of ripples in the graphene sheet.
AbstractList Despite being only one-atom thick, defect-free graphene is considered to be completely impermeable to all gases and liquids.sup.1-10. This conclusion is based on theory.sup.3-8 and supported by experiments.sup.1,9,10 that could not detect gas permeation through micrometre-size membranes within a detection limit of 10.sup.5 to 10.sup.6 atoms per second. Here, using small monocrystalline containers tightly sealed with graphene, we show that defect-free graphene is impermeable with an accuracy of eight to nine orders of magnitude higher than in the previous experiments. We are capable of discerning (but did not observe) permeation of just a few helium atoms per hour, and this detection limit is also valid for all other gases tested (neon, nitrogen, oxygen, argon, krypton and xenon), except for hydrogen. Hydrogen shows noticeable permeation, even though its molecule is larger than helium and should experience a higher energy barrier. This puzzling observation is attributed to a two-stage process that involves dissociation of molecular hydrogen at catalytically active graphene ripples, followed by adsorbed atoms flipping to the other side of the graphene sheet with a relatively low activation energy of about 1.0 electronvolt, a value close to that previously reported for proton transport.sup.11,12. Our work provides a key reference for the impermeability of two-dimensional materials and is important from a fundamental perspective and for their potential applications.
Despite being only one-atom thick, defect-free graphene is considered to be completely impermeable to all gases and liquids.sup.1-10. This conclusion is based on theory.sup.3-8 and supported by experiments.sup.1,9,10 that could not detect gas permeation through micrometre-size membranes within a detection limit of 10.sup.5 to 10.sup.6 atoms per second. Here, using small monocrystalline containers tightly sealed with graphene, we show that defect-free graphene is impermeable with an accuracy of eight to nine orders of magnitude higher than in the previous experiments. We are capable of discerning (but did not observe) permeation of just a few helium atoms per hour, and this detection limit is also valid for all other gases tested (neon, nitrogen, oxygen, argon, krypton and xenon), except for hydrogen. Hydrogen shows noticeable permeation, even though its molecule is larger than helium and should experience a higher energy barrier. This puzzling observation is attributed to a two-stage process that involves dissociation of molecular hydrogen at catalytically active graphene ripples, followed by adsorbed atoms flipping to the other side of the graphene sheet with a relatively low activation energy of about 1.0 electronvolt, a value close to that previously reported for proton transport.sup.11,12. Our work provides a key reference for the impermeability of two-dimensional materials and is important from a fundamental perspective and for their potential applications. Graphene is shown to be impermeable to helium and several other gases, except for hydrogen, which is attributed to the strong catalytic activity of ripples in the graphene sheet.
Despite being only one-atom thick, defect-free graphene is considered to be completely impermeable to all gases and liquids1-10. This conclusion is based on theory3-8 and supported by experiments1'9,10 that could not detect gas permeation through micrometre-size membranes within a detection limit of 105 to 106 atoms per second. Here, using small monocrystalline containers tightly sealed with graphene, we show that defect-free graphene is impermeable with an accuracy of eight to nine orders of magnitude higher than in the previous experiments. We are capable of discerning (but did not observe) permeation ofjust a few helium atoms per hour, and this detection limit is also valid for all other gases tested (neon, nitrogen, oxygen, argon, krypton and xenon), except for hydrogen. Hydrogen shows noticeable permeation, even though its molecule is larger than helium and should experience a higher energy barrier. This puzzling observation is attributed to a two-stage process that involves dissociation of molecular hydrogen at catalytically active graphene ripples, followed by adsorbed atoms flipping to the other side of the graphene sheet with a relatively low activation energy of about 1.0 electronvolt, a value close to that previously reported for proton transport11,12. Our work provides a key reference for the impermeability of two-dimensional materials and is important from a fundamental perspective and for their potential applications.
Despite being only one-atom thick, defect-free graphene is considered to be completely impermeable to all gases and liquids . This conclusion is based on theory and supported by experiments that could not detect gas permeation through micrometre-size membranes within a detection limit of 10 to 10 atoms per second. Here, using small monocrystalline containers tightly sealed with graphene, we show that defect-free graphene is impermeable with an accuracy of eight to nine orders of magnitude higher than in the previous experiments. We are capable of discerning (but did not observe) permeation of just a few helium atoms per hour, and this detection limit is also valid for all other gases tested (neon, nitrogen, oxygen, argon, krypton and xenon), except for hydrogen. Hydrogen shows noticeable permeation, even though its molecule is larger than helium and should experience a higher energy barrier. This puzzling observation is attributed to a two-stage process that involves dissociation of molecular hydrogen at catalytically active graphene ripples, followed by adsorbed atoms flipping to the other side of the graphene sheet with a relatively low activation energy of about 1.0 electronvolt, a value close to that previously reported for proton transport . Our work provides a key reference for the impermeability of two-dimensional materials and is important from a fundamental perspective and for their potential applications.
Despite being only one-atom thick, defect-free graphene is considered to be completely impermeable to all gases and liquids 1 – 10 . This conclusion is based on theory 3 – 8 and supported by experiments 1 , 9 , 10 that could not detect gas permeation through micrometre-size membranes within a detection limit of 10 5 to 10 6 atoms per second. Here, using small monocrystalline containers tightly sealed with graphene, we show that defect-free graphene is impermeable with an accuracy of eight to nine orders of magnitude higher than in the previous experiments. We are capable of discerning (but did not observe) permeation of just a few helium atoms per hour, and this detection limit is also valid for all other gases tested (neon, nitrogen, oxygen, argon, krypton and xenon), except for hydrogen. Hydrogen shows noticeable permeation, even though its molecule is larger than helium and should experience a higher energy barrier. This puzzling observation is attributed to a two-stage process that involves dissociation of molecular hydrogen at catalytically active graphene ripples, followed by adsorbed atoms flipping to the other side of the graphene sheet with a relatively low activation energy of about 1.0 electronvolt, a value close to that previously reported for proton transport 11 , 12 . Our work provides a key reference for the impermeability of two-dimensional materials and is important from a fundamental perspective and for their potential applications. Graphene is shown to be impermeable to helium and several other gases, except for hydrogen, which is attributed to the strong catalytic activity of ripples in the graphene sheet.
Audience Academic
Author Wang, F. C.
Yang, Q.
Grigorieva, I. V.
Geim, A. K.
Yu, J.
Nair, R. R.
Lozada-Hidalgo, M.
Sun, P. Z.
Stebunov, Y. V.
Xiong, W. Q.
Yuan, S. J.
Kuang, W. J.
Katsnelson, M. I.
Author_xml – sequence: 1
  givenname: P. Z.
  surname: Sun
  fullname: Sun, P. Z.
  organization: Department of Physics and Astronomy, University of Manchester, National Graphene Institute, University of Manchester
– sequence: 2
  givenname: Q.
  surname: Yang
  fullname: Yang, Q.
  organization: Department of Physics and Astronomy, University of Manchester, National Graphene Institute, University of Manchester
– sequence: 3
  givenname: W. J.
  surname: Kuang
  fullname: Kuang, W. J.
  organization: Department of Physics and Astronomy, University of Manchester
– sequence: 4
  givenname: Y. V.
  surname: Stebunov
  fullname: Stebunov, Y. V.
  organization: Department of Physics and Astronomy, University of Manchester, National Graphene Institute, University of Manchester
– sequence: 5
  givenname: W. Q.
  surname: Xiong
  fullname: Xiong, W. Q.
  organization: Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University
– sequence: 6
  givenname: J.
  surname: Yu
  fullname: Yu, J.
  organization: Institute for Molecules and Materials, Radboud University
– sequence: 7
  givenname: R. R.
  surname: Nair
  fullname: Nair, R. R.
  organization: National Graphene Institute, University of Manchester
– sequence: 8
  givenname: M. I.
  surname: Katsnelson
  fullname: Katsnelson, M. I.
  organization: Institute for Molecules and Materials, Radboud University
– sequence: 9
  givenname: S. J.
  surname: Yuan
  fullname: Yuan, S. J.
  email: s.yuan@whu.edu.cn
  organization: Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Institute for Molecules and Materials, Radboud University
– sequence: 10
  givenname: I. V.
  surname: Grigorieva
  fullname: Grigorieva, I. V.
  organization: Department of Physics and Astronomy, University of Manchester
– sequence: 11
  givenname: M.
  surname: Lozada-Hidalgo
  fullname: Lozada-Hidalgo, M.
  organization: Department of Physics and Astronomy, University of Manchester
– sequence: 12
  givenname: F. C.
  surname: Wang
  fullname: Wang, F. C.
  organization: Department of Physics and Astronomy, University of Manchester, National Graphene Institute, University of Manchester, Chinese Academy of Sciences Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China
– sequence: 13
  givenname: A. K.
  surname: Geim
  fullname: Geim, A. K.
  email: geim@manchester.ac.uk
  organization: Department of Physics and Astronomy, University of Manchester, National Graphene Institute, University of Manchester
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32161387$$D View this record in MEDLINE/PubMed
BookMark eNp10l1r2zAUBmAxOtY02w_YzTDbTctQpw9Hli9DaLtC6GDr2KU4to88FX9VsiH991NIty4lxRcG-zkv8vF7Qo66vkNC3nN2zpnUX0LKF1pRJhgVLGN084rMeJopmiqdHZEZY0JTpqU6Jich3DHGFjxL35BjKbjiUmczcrp2rRtD0ndJDSFx7YC-RShc48aHpLdJ7WH4jR2-Ja8tNAHfPd7n5Oflxe3qK11_u7peLde0VJyPVBaVsEJUFnKVIwBIITJV5FVRSYEyzQEKIdEWUnGmrBKQqgUgKpUqUXKUc3K6yx18fz9hGE3rQolNAx32UzBCZiqTMtc80k_P6F0_-S6eLiodNyJzkT6pGho0rrP96KHchpqlEpyzXMe8OaEHVB0_3EMTt25dfLznPx7w5eDuzf_o_ACKV4WtKw-mnu0NRDPiZqxhCsFc__i-bz-_bJe3v1Y3-5rvdOn7EDxaM3jXgn8wnJltmcyuTCaWyWzLZDZx5sPjfqeixerfxN_2RCB2IMRXXY3-6Qe8nPoH8THPrA
CitedBy_id crossref_primary_10_1021_acs_jpcc_2c00855
crossref_primary_10_59717_j_xinn_mater_2024_100053
crossref_primary_10_1016_j_physb_2024_416063
crossref_primary_10_1021_acs_jpcc_0c03143
crossref_primary_10_1103_PhysRevMaterials_7_054003
crossref_primary_10_1021_acs_jpclett_0c02447
crossref_primary_10_1021_acs_nanolett_2c02323
crossref_primary_10_1016_j_jnucmat_2020_152348
crossref_primary_10_1093_micmic_ozad067_826
crossref_primary_10_1166_mex_2024_2695
crossref_primary_10_1039_D4RA01523A
crossref_primary_10_1016_j_desal_2022_115621
crossref_primary_10_1021_acsami_2c18329
crossref_primary_10_1002_admi_202200773
crossref_primary_10_1021_acsami_3c11220
crossref_primary_10_1021_acsami_1c06495
crossref_primary_10_1038_s41467_020_20341_7
crossref_primary_10_1134_S1995078020030027
crossref_primary_10_1016_j_apsusc_2024_159412
crossref_primary_10_1038_s41586_023_06247_6
crossref_primary_10_1021_acsami_3c07763
crossref_primary_10_3389_fphy_2022_887738
crossref_primary_10_1002_admi_202102429
crossref_primary_10_1380_vss_66_140
crossref_primary_10_1021_acsnano_0c02496
crossref_primary_10_1103_PhysRevB_108_045408
crossref_primary_10_1039_D1CP02121D
crossref_primary_10_1039_D1CS01061A
crossref_primary_10_1038_s41378_020_00212_3
crossref_primary_10_1116_6_0003159
crossref_primary_10_1002_adma_202104308
crossref_primary_10_1002_adma_202211008
crossref_primary_10_1039_D3NR03459C
crossref_primary_10_1007_s10904_023_02925_0
crossref_primary_10_1038_s41467_021_27347_9
crossref_primary_10_1016_j_est_2021_102692
crossref_primary_10_1002_adma_202110454
crossref_primary_10_1103_PhysRevB_106_045418
crossref_primary_10_3390_mi13040547
crossref_primary_10_1016_j_chemphys_2022_111597
crossref_primary_10_1021_acs_jpclett_0c02112
crossref_primary_10_1021_acs_jpcc_3c00291
crossref_primary_10_1016_j_desal_2022_115601
crossref_primary_10_1016_j_apcatb_2023_122369
crossref_primary_10_1515_ntrev_2022_0566
crossref_primary_10_1016_j_corsci_2022_110939
crossref_primary_10_1073_pnas_2303353120
crossref_primary_10_1021_acsanm_1c03650
crossref_primary_10_1021_acs_nanolett_2c04886
crossref_primary_10_3390_cryst11121484
crossref_primary_10_1021_acsnano_0c10798
crossref_primary_10_1021_acs_nanolett_2c00838
crossref_primary_10_1039_D3TC00687E
crossref_primary_10_1073_pnas_2300481120
crossref_primary_10_1039_D2CP05285G
crossref_primary_10_1021_acs_nanolett_1c02585
crossref_primary_10_1021_acs_nanolett_3c02321
crossref_primary_10_1039_D1NR00237F
crossref_primary_10_1016_j_carbon_2022_10_035
crossref_primary_10_1039_D3NR05626K
crossref_primary_10_1039_D1MA00318F
crossref_primary_10_1126_science_abd7687
crossref_primary_10_1039_D2RA01846B
crossref_primary_10_1063_5_0134654
crossref_primary_10_1002_smll_202402561
crossref_primary_10_1016_j_matt_2022_06_014
crossref_primary_10_1016_j_carbon_2020_09_071
crossref_primary_10_1021_acsami_0c23013
crossref_primary_10_1016_j_carbon_2021_02_084
crossref_primary_10_1021_acsami_0c22288
crossref_primary_10_1146_annurev_matsci_081320_032747
crossref_primary_10_1021_acs_jpcc_3c06294
crossref_primary_10_1016_j_ijhydene_2020_11_073
crossref_primary_10_1016_j_carbon_2022_08_036
crossref_primary_10_1002_qua_27126
crossref_primary_10_1073_pnas_2022201118
crossref_primary_10_1021_acs_accounts_1c00727
crossref_primary_10_1021_acs_nanolett_1c03498
crossref_primary_10_3390_nano11061603
crossref_primary_10_1016_j_chemosphere_2021_131892
crossref_primary_10_3390_met11010147
crossref_primary_10_1038_s41467_022_33451_1
crossref_primary_10_3390_nano10102077
crossref_primary_10_1021_acsami_2c09865
crossref_primary_10_1038_s41467_022_30724_7
crossref_primary_10_1515_revic_2021_0035
crossref_primary_10_1088_2632_959X_acbc91
crossref_primary_10_1016_j_surfin_2022_101923
crossref_primary_10_1016_j_cej_2022_138033
crossref_primary_10_1021_acsami_4c08045
crossref_primary_10_1016_j_matt_2023_03_019
crossref_primary_10_1063_5_0061010
crossref_primary_10_1088_1361_6528_acbb7d
crossref_primary_10_1016_j_cej_2022_138711
crossref_primary_10_1038_s41929_021_00682_2
crossref_primary_10_1016_j_microrel_2022_114483
crossref_primary_10_1039_D1NR06443F
crossref_primary_10_1021_acsami_0c09765
crossref_primary_10_1016_j_conbuildmat_2022_128947
crossref_primary_10_1016_j_apcatb_2023_122442
crossref_primary_10_1016_j_wear_2024_205395
crossref_primary_10_1038_s41586_021_04296_3
crossref_primary_10_1016_j_carbon_2022_08_054
crossref_primary_10_1039_D2NR06010H
crossref_primary_10_1016_j_porgcoat_2024_108604
crossref_primary_10_1038_s41699_022_00292_x
crossref_primary_10_1088_1361_648X_ac4f7e
crossref_primary_10_1002_adma_202201472
crossref_primary_10_1016_j_diamond_2021_108695
crossref_primary_10_34133_2020_8748602
crossref_primary_10_1038_s41586_024_07435_8
crossref_primary_10_1016_j_porgcoat_2022_107184
crossref_primary_10_1016_j_porgcoat_2023_107463
crossref_primary_10_1016_j_cej_2023_147840
crossref_primary_10_1073_pnas_2309384121
crossref_primary_10_3390_membranes11100793
crossref_primary_10_1016_j_apsusc_2021_150295
crossref_primary_10_1088_1361_648X_ac2bc6
crossref_primary_10_1002_smll_202101890
crossref_primary_10_1016_j_apsusc_2021_149977
crossref_primary_10_1021_acsami_3c04520
crossref_primary_10_1021_acsami_1c19393
crossref_primary_10_1021_acsnano_3c11885
crossref_primary_10_1088_2053_1583_abbecd
crossref_primary_10_1063_5_0122356
crossref_primary_10_1021_acs_jpclett_2c03434
crossref_primary_10_3390_catal11080947
crossref_primary_10_1021_acs_chemmater_2c00450
crossref_primary_10_1021_acs_jpcc_0c05831
crossref_primary_10_1021_acsami_1c18759
crossref_primary_10_1016_j_mee_2022_111915
crossref_primary_10_1021_acsnano_2c07193
crossref_primary_10_1002_adma_202312460
crossref_primary_10_1088_2631_7990_ad15f5
crossref_primary_10_1016_j_carbon_2021_02_056
crossref_primary_10_1088_1361_648X_acdebf
crossref_primary_10_3390_nano11113020
crossref_primary_10_1016_j_jallcom_2023_169283
crossref_primary_10_1038_s41467_020_20503_7
crossref_primary_10_1016_j_carbon_2020_12_045
crossref_primary_10_1021_acsaem_1c01738
crossref_primary_10_1021_acs_energyfuels_4c01913
crossref_primary_10_1063_5_0056413
crossref_primary_10_1088_1361_6528_ad2480
crossref_primary_10_1016_j_chempr_2023_04_020
crossref_primary_10_3390_en16217253
crossref_primary_10_1016_j_cossms_2021_100900
crossref_primary_10_1039_D2NR01917E
crossref_primary_10_1021_acscatal_1c02145
crossref_primary_10_1063_5_0175537
crossref_primary_10_1384_jsa_29_82
crossref_primary_10_1016_j_chemphys_2022_111744
crossref_primary_10_1002_adfm_202313968
crossref_primary_10_1016_j_memsci_2021_119146
crossref_primary_10_1016_j_carbon_2024_119397
crossref_primary_10_1016_j_ijhydene_2021_12_132
crossref_primary_10_1016_j_apsusc_2021_150988
crossref_primary_10_1021_acsnano_2c01786
crossref_primary_10_1016_j_carbon_2021_01_127
crossref_primary_10_1002_adfm_202107407
crossref_primary_10_1103_PhysRevB_103_085418
crossref_primary_10_3390_polym14050948
crossref_primary_10_1021_acsnano_3c06828
crossref_primary_10_1016_j_diamond_2021_108414
crossref_primary_10_1088_1361_6528_abf5fb
crossref_primary_10_1088_2632_959X_abd521
crossref_primary_10_3103_S1068375523050058
crossref_primary_10_1021_acs_nanolett_2c03701
crossref_primary_10_1007_s12274_023_6060_9
crossref_primary_10_1016_j_progpolymsci_2022_101504
crossref_primary_10_1021_acsnano_2c03730
crossref_primary_10_1038_s41467_023_42617_4
crossref_primary_10_1103_PhysRevB_108_144107
crossref_primary_10_1016_j_cej_2020_127510
crossref_primary_10_1021_acs_jpclett_1c03793
crossref_primary_10_1080_01457632_2024_2368425
crossref_primary_10_1007_s11998_020_00435_z
crossref_primary_10_1038_s41467_023_43637_w
crossref_primary_10_1021_acs_nanolett_2c03181
crossref_primary_10_1109_TIM_2022_3152321
crossref_primary_10_1038_s41467_020_19893_5
crossref_primary_10_1016_j_apsusc_2022_155897
crossref_primary_10_1016_j_surfcoat_2024_130934
crossref_primary_10_1016_j_matchemphys_2022_126270
crossref_primary_10_1021_acs_jpclett_2c00520
crossref_primary_10_1038_s41598_023_29374_6
crossref_primary_10_1016_j_jcis_2023_11_089
crossref_primary_10_1016_j_nanoms_2021_05_002
crossref_primary_10_1002_smll_202100514
crossref_primary_10_1002_smll_202401767
crossref_primary_10_1038_s41586_022_05130_0
crossref_primary_10_1080_02670844_2023_2194500
crossref_primary_10_1002_pi_6080
crossref_primary_10_1088_1361_648X_ac61b4
crossref_primary_10_1016_j_coche_2023_100905
crossref_primary_10_1039_D0CP05053A
crossref_primary_10_3390_nano13091494
crossref_primary_10_1016_j_compositesb_2024_111652
crossref_primary_10_1016_j_polymer_2021_123857
crossref_primary_10_1021_acsnano_0c10229
crossref_primary_10_1021_acs_nanolett_0c04989
crossref_primary_10_1021_acsanm_4c02312
crossref_primary_10_3390_nano13121861
crossref_primary_10_1038_s41467_022_31779_2
crossref_primary_10_3390_polym12092094
crossref_primary_10_3390_ma17122889
crossref_primary_10_1016_j_memsci_2023_121583
crossref_primary_10_2139_ssrn_4114029
crossref_primary_10_1016_j_cartre_2021_100086
crossref_primary_10_1016_j_jallcom_2021_158744
crossref_primary_10_1021_acsnano_3c09593
crossref_primary_10_1051_e3sconf_202338304095
crossref_primary_10_1021_acsami_1c09588
crossref_primary_10_1021_acsami_1c09229
crossref_primary_10_1088_2053_1583_abe777
crossref_primary_10_1126_sciadv_abc7927
crossref_primary_10_1039_D3NH00462G
crossref_primary_10_1063_5_0170313
crossref_primary_10_3390_hydrogen4040059
crossref_primary_10_1021_acsanm_1c03201
crossref_primary_10_1080_19475411_2023_2300348
crossref_primary_10_1016_j_jmst_2020_12_084
crossref_primary_10_1002_adma_202106785
crossref_primary_10_1016_j_apsusc_2021_151529
crossref_primary_10_1002_er_6675
crossref_primary_10_1038_s41560_024_01556_0
Cites_doi 10.1126/science.1136836
10.1103/PhysRevLett.97.186102
10.1006/jcph.1995.1039
10.1088/1367-2630/12/12/125012
10.1016/j.memsci.2013.02.047
10.1126/science.1244358
10.1038/nnano.2012.162
10.1038/nmat3386
10.1039/C2CC36747E
10.1038/s41565-018-0088-0
10.1063/1.3684549
10.1038/nnano.2011.123
10.1038/nature19363
10.1103/PhysRevB.54.11169
10.1103/PhysRevB.81.075425
10.1063/1.3021413
10.1063/1.5024317
10.1103/PhysRevLett.77.3865
10.1038/nnano.2015.158
10.1016/j.ssc.2007.02.047
10.1016/j.carbon.2013.05.052
10.1021/jp905702e
10.1021/nl801457b
10.1039/c3cp52318g
10.1103/PhysRevLett.119.036101
10.1063/1.5024132
10.1038/nature14015
10.1063/1.5027821
10.1002/jcc.21069
10.1038/nature12385
10.1016/j.carbon.2013.09.055
10.1002/jcc.20495
10.1021/acs.jpclett.7b02820
10.1103/PhysRevLett.102.076102
10.1039/C3CS60253B
10.1103/PhysRevB.13.5188
10.1016/j.electacta.2018.11.005
10.1126/science.aac9726
10.1021/nn404746h
10.1038/nmat2011
10.1021/nl060018t
10.1103/PhysRevLett.103.246804
10.1016/0022-2852(61)90111-4
10.1021/acs.nanolett.7b04713
10.1039/C6CP08923B
10.1088/2053-1583/3/2/025004
10.1002/adfm.201202355
ContentType Journal Article
Copyright Crown 2020
COPYRIGHT 2020 Nature Publishing Group
Copyright Nature Publishing Group Mar 12, 2020
Copyright_xml – notice: Crown 2020
– notice: COPYRIGHT 2020 Nature Publishing Group
– notice: Copyright Nature Publishing Group Mar 12, 2020
DBID NPM
AAYXX
CITATION
ATWCN
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PQEST
PQQKQ
PQUKI
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
DOI 10.1038/s41586-020-2070-x
DatabaseName PubMed
CrossRef
Gale In Context: Middle School
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Proquest Nursing & Allied Health Source
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
ProQuest_Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
ProQuest Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central
Advanced Technologies & Aerospace Database‎ (1962 - current)
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Psychology Database
ProQuest research library
ProQuest Science Journals
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
Environmental Sciences and Pollution Management
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
University of Michigan
Technology Collection
Technology Research Database
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Agricultural Science Database

PubMed




Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 232
ExternalDocumentID A621109873
10_1038_s41586_020_2070_x
32161387
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAYEP
AAZLF
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABVXF
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AFBBN
AFFNX
AFKRA
AFLOW
AFRAH
AFRQD
AFSHS
AGAYW
AGEZK
AGHSJ
AGHTU
AGSOS
AHMBA
AHSBF
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
B-7
BBNVY
BCU
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DU5
DWQXO
E.-
E.L
EAP
EBS
EE.
EMH
EPS
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P2P
P62
PATMY
PCBAR
PDBOC
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YNT
YOC
YQT
YR2
YXB
YZZ
ZCA
~02
~7V
~88
~KM
.-4
.GJ
.HR
00M
08P
0B8
1CY
1VW
354
3EH
3O-
3V.
4.4
41~
42X
4R4
663
79B
9M8
A8Z
AAJYS
AAKAS
AAVBQ
AAYOK
AAYZH
ABAWZ
ABDBF
ABEFU
ABTAH
ACBNA
ACBTR
ACTDY
ADRHT
ADYSU
ADZCM
AFFDN
AFHKK
AGCDD
AGNAY
AIDAL
AIYXT
AJUXI
APEBS
ARTTT
B0M
BCR
BDKGC
BES
BKOMP
BLC
DB5
DO4
EAD
EAS
EAZ
EBC
EBD
EBO
ECC
EJD
EMB
EMF
EMK
EMOBN
EPL
ESE
ESN
ESTFP
F20
FA8
FAC
G8K
J5H
L-9
LGEZI
LOTEE
M0L
MVM
N4W
NADUK
NEJ
NPM
NXXTH
ODYON
OHT
P-O
PEA
PM3
PV9
QS-
R4F
RHI
SKT
TH9
TUD
TUS
UAO
UBY
UHB
USG
VOH
X7L
XOL
YJ6
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZE2
ZGI
ZHY
ZKB
ZKG
ZY4
~8M
~G0
AAYXX
CITATION
AADEA
AAEXX
ABEEJ
ADFPY
ADZGE
AADWK
AAJMP
AAYJO
ABGIJ
ACBMV
ACBRV
ACBYP
ACIGE
ACTTH
ACVWB
ADMDM
ADQMX
AEDAW
AEFTE
AFNRJ
AGGBP
AGPPL
AHGBK
AJDOV
AMRJV
I-U
U1R
XFK
ZA5
AAPBV
ABGFU
ABPTK
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PQEST
PQUKI
Q9U
RC3
SOI
7X8
ID FETCH-LOGICAL-c611t-3bd2f22dfa969eaaa32276b9dbd32e349aab23efb36106f62a465aee66462c1e3
IEDL.DBID 8C1
ISSN 0028-0836
IngestDate Sat Oct 05 06:10:00 EDT 2024
Thu Oct 10 20:51:30 EDT 2024
Thu Feb 22 23:34:29 EST 2024
Fri Feb 02 05:18:38 EST 2024
Tue Dec 12 21:16:23 EST 2023
Fri Feb 02 04:07:08 EST 2024
Thu Aug 01 20:09:26 EDT 2024
Thu Aug 01 19:41:54 EDT 2024
Thu Sep 12 17:11:34 EDT 2024
Wed Oct 16 00:44:58 EDT 2024
Fri Oct 11 20:36:45 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7798
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c611t-3bd2f22dfa969eaaa32276b9dbd32e349aab23efb36106f62a465aee66462c1e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 32161387
PQID 2382073924
PQPubID 40569
PageCount 4
ParticipantIDs proquest_miscellaneous_2376733981
proquest_journals_2382073924
gale_infotracmisc_A621109873
gale_infotracgeneralonefile_A621109873
gale_infotraccpiq_621109873
gale_infotracacademiconefile_A621109873
gale_incontextgauss_ISR_A621109873
gale_incontextgauss_ATWCN_A621109873
crossref_primary_10_1038_s41586_020_2070_x
pubmed_primary_32161387
springer_journals_10_1038_s41586_020_2070_x
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Kunc, Rejhon, Hlídek (CR31) 2018; 8
Kerber, Sierka, Sauer (CR43) 2008; 29
Poltavsky, Zheng, Mortazavi, Tkatchenko (CR28) 2018; 148
Kresse, Furthmuller (CR39) 1996; 54
Meyer (CR24) 2007; 143
CR38
Bukola, Creager (CR49) 2019; 296
Wang (CR10) 2015; 10
Bunch (CR13) 2007; 315
Hencky (CR36) 1915; 63
Grimme (CR42) 2006; 27
Radha (CR14) 2016; 538
Boukhvalov, Katsnelson (CR22) 2009; 113
Monkhorst, Pack (CR41) 1976; 13
Kelly (CR16) 2018; 18
Sheppard, Xiao, Chemelewski, Johnson, Henkelman (CR44) 2012; 136
Feng (CR7) 2017; 8
Park, Jung (CR34) 2014; 43
Leenaerts, Partoens, Peeters (CR3) 2008; 93
Berry (CR2) 2013; 62
Perdew, Burke, Ernzerhof (CR40) 1996; 77
Miao, Nardelli, Wang, Liu (CR5) 2013; 15
Haigh (CR15) 2012; 11
Herzberg, Monfils (CR45) 1961; 5
Bissett, Konabe, Okada, Tsuji, Ago (CR21) 2013; 7
Wang (CR33) 2013; 342
Koenig, Boddeti, Dunn, Bunch (CR18) 2011; 6
Geringer (CR25) 2009; 102
Wang (CR37) 2017; 119
Fasolino, Los, Katsnelson (CR26) 2007; 6
Geim, Grigorieva (CR32) 2013; 499
Seel, Pandey (CR6) 2016; 3
Hu (CR11) 2014; 516
Whittaker, Minot, Tanenbaum, McEuen, Davis (CR35) 2006; 6
Lozada-Hidalgo (CR12) 2016; 351
Bunch (CR1) 2008; 8
Koenig, Wang, Pellegrino, Bunch (CR9) 2012; 7
Plimpton (CR46) 1995; 117
Deveau, Ma, Datta (CR19) 2013; 437
Wu (CR20) 2013; 49
Paris (CR48) 2013; 23
Riedl, Coletti, Iwasaki, Zakharov, Starke (CR30) 2009; 103
Wang, Kaxiras (CR8) 2010; 12
McKay, Wales, Jenkins, Verges, de Andres (CR23) 2010; 81
Hu (CR17) 2018; 13
Mazzuca, Haut (CR29) 2018; 148
Tsetseris, Pantelides (CR4) 2014; 67
Kroes, Fasolino, Katsnelson (CR27) 2017; 19
Hornekær (CR47) 2006; 97
WL Wang (2070_CR8) 2010; 12
B Radha (2070_CR14) 2016; 538
I Poltavsky (2070_CR28) 2018; 148
L Tsetseris (2070_CR4) 2014; 67
M Seel (2070_CR6) 2016; 3
AK Geim (2070_CR32) 2013; 499
L Hornekær (2070_CR47) 2006; 97
D Sheppard (2070_CR44) 2012; 136
G Herzberg (2070_CR45) 1961; 5
Q Wu (2070_CR20) 2013; 49
JS Bunch (2070_CR1) 2008; 8
ND Deveau (2070_CR19) 2013; 437
JMH Kroes (2070_CR27) 2017; 19
V Berry (2070_CR2) 2013; 62
T Kerber (2070_CR43) 2008; 29
S Plimpton (2070_CR46) 1995; 117
JP Perdew (2070_CR40) 1996; 77
L Wang (2070_CR33) 2013; 342
JD Whittaker (2070_CR35) 2006; 6
S Hu (2070_CR11) 2014; 516
G Kresse (2070_CR39) 1996; 54
JC Meyer (2070_CR24) 2007; 143
DJ Kelly (2070_CR16) 2018; 18
M Miao (2070_CR5) 2013; 15
JS Bunch (2070_CR13) 2007; 315
DW Boukhvalov (2070_CR22) 2009; 113
V Geringer (2070_CR25) 2009; 102
H Hencky (2070_CR36) 1915; 63
HG Park (2070_CR34) 2014; 43
HJ Monkhorst (2070_CR41) 1976; 13
S Grimme (2070_CR42) 2006; 27
S Hu (2070_CR17) 2018; 13
L Wang (2070_CR10) 2015; 10
M Lozada-Hidalgo (2070_CR12) 2016; 351
G Wang (2070_CR37) 2017; 119
C Riedl (2070_CR30) 2009; 103
SP Koenig (2070_CR18) 2011; 6
O Leenaerts (2070_CR3) 2008; 93
A Fasolino (2070_CR26) 2007; 6
SJ Haigh (2070_CR15) 2012; 11
JW Mazzuca (2070_CR29) 2018; 148
A Paris (2070_CR48) 2013; 23
MA Bissett (2070_CR21) 2013; 7
2070_CR38
J Kunc (2070_CR31) 2018; 8
SP Koenig (2070_CR9) 2012; 7
H McKay (2070_CR23) 2010; 81
Y Feng (2070_CR7) 2017; 8
S Bukola (2070_CR49) 2019; 296
References_xml – volume: 315
  start-page: 490
  year: 2007
  end-page: 493
  ident: CR13
  article-title: Electromechanical resonators from graphene sheets
  publication-title: Science
  doi: 10.1126/science.1136836
  contributor:
    fullname: Bunch
– volume: 97
  start-page: 186102
  year: 2006
  ident: CR47
  article-title: Clustering of chemisorbed H(D) atoms on the graphite (0001) surface due to preferential sticking
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.186102
  contributor:
    fullname: Hornekær
– volume: 117
  start-page: 1
  year: 1995
  end-page: 19
  ident: CR46
  article-title: Fast parallel algorithms for short-range molecular dynamics
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1995.1039
  contributor:
    fullname: Plimpton
– volume: 12
  start-page: 125012
  year: 2010
  ident: CR8
  article-title: Graphene hydrate: theoretical prediction of a new insulating form of graphene
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/12/12/125012
  contributor:
    fullname: Kaxiras
– volume: 437
  start-page: 298
  year: 2013
  end-page: 311
  ident: CR19
  article-title: Beyond Sieverts’ law: a comprehensive microkinetic model of hydrogen permeation in dense metal membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2013.02.047
  contributor:
    fullname: Datta
– volume: 342
  start-page: 614
  year: 2013
  end-page: 617
  ident: CR33
  article-title: One-dimensional electrical contact to a two-dimensional material
  publication-title: Science
  doi: 10.1126/science.1244358
  contributor:
    fullname: Wang
– volume: 7
  start-page: 728
  year: 2012
  end-page: 732
  ident: CR9
  article-title: Selective molecular sieving through porous graphene
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.162
  contributor:
    fullname: Bunch
– volume: 11
  start-page: 764
  year: 2012
  end-page: 767
  ident: CR15
  article-title: Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3386
  contributor:
    fullname: Haigh
– volume: 49
  start-page: 677
  year: 2013
  end-page: 679
  ident: CR20
  article-title: Selective surface functionalization at regions of high local curvature in graphene
  publication-title: Chem. Commun.
  doi: 10.1039/C2CC36747E
  contributor:
    fullname: Wu
– volume: 13
  start-page: 468
  year: 2018
  end-page: 472
  ident: CR17
  article-title: Transport of hydrogen isotopes through interlayer spacing in van der Waals crystals
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0088-0
  contributor:
    fullname: Hu
– volume: 136
  start-page: 074103
  year: 2012
  ident: CR44
  article-title: A generalized solid-state nudged elastic band method
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3684549
  contributor:
    fullname: Henkelman
– volume: 6
  start-page: 543
  year: 2011
  end-page: 546
  ident: CR18
  article-title: Ultrastrong adhesion of graphene membranes
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.123
  contributor:
    fullname: Bunch
– volume: 538
  start-page: 222
  year: 2016
  end-page: 225
  ident: CR14
  article-title: Molecular transport through capillaries made with atomic-scale precision
  publication-title: Nature
  doi: 10.1038/nature19363
  contributor:
    fullname: Radha
– volume: 54
  start-page: 11169
  year: 1996
  end-page: 11186
  ident: CR39
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
  contributor:
    fullname: Furthmuller
– volume: 81
  start-page: 075425
  year: 2010
  ident: CR23
  article-title: Hydrogen on graphene under stress: molecular dissociation and gap opening
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.81.075425
  contributor:
    fullname: de Andres
– volume: 63
  start-page: 311
  year: 1915
  end-page: 317
  ident: CR36
  article-title: Uber den spannungzustand in kreisrunden platten mit verschwindender biegungssteiflgeit
  publication-title: Z. Math. Phys.
  contributor:
    fullname: Hencky
– volume: 93
  start-page: 193107
  year: 2008
  ident: CR3
  article-title: Graphene: a perfect nanoballoon
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3021413
  contributor:
    fullname: Peeters
– volume: 148
  start-page: 204707
  year: 2018
  ident: CR28
  article-title: Quantum tunneling of thermal protons through pristine graphene
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5024317
  contributor:
    fullname: Tkatchenko
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: CR40
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
  contributor:
    fullname: Ernzerhof
– volume: 10
  start-page: 785
  year: 2015
  end-page: 790
  ident: CR10
  article-title: Molecular valves for controlling gas phase transport made from discrete ångström-sized pores in graphene
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.158
  contributor:
    fullname: Wang
– volume: 143
  start-page: 101
  year: 2007
  end-page: 109
  ident: CR24
  article-title: On the roughness of single- and bi-layer graphene membranes
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2007.02.047
  contributor:
    fullname: Meyer
– volume: 62
  start-page: 1
  year: 2013
  end-page: 10
  ident: CR2
  article-title: Impermeability of graphene and its applications
  publication-title: Carbon
  doi: 10.1016/j.carbon.2013.05.052
  contributor:
    fullname: Berry
– volume: 113
  start-page: 14176
  year: 2009
  end-page: 14178
  ident: CR22
  article-title: Enhancement of chemical activity in corrugated graphene
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp905702e
  contributor:
    fullname: Katsnelson
– volume: 8
  start-page: 2458
  year: 2008
  end-page: 2462
  ident: CR1
  article-title: Impermeable atomic membranes from graphene sheets
  publication-title: Nano Lett.
  doi: 10.1021/nl801457b
  contributor:
    fullname: Bunch
– volume: 15
  start-page: 16132
  year: 2013
  end-page: 16137
  ident: CR5
  article-title: First principles study of the permeability of graphene to hydrogen atoms
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp52318g
  contributor:
    fullname: Liu
– volume: 119
  start-page: 036101
  year: 2017
  ident: CR37
  article-title: Measuring interlayer shear stress in bilayer graphene
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.036101
  contributor:
    fullname: Wang
– volume: 8
  start-page: 045015
  year: 2018
  ident: CR31
  article-title: Hydrogen intercalation of epitaxial graphene and buffer layer probed by mid-infrared absorption and Raman spectroscopy
  publication-title: AIP Adv.
  doi: 10.1063/1.5024132
  contributor:
    fullname: Hlídek
– volume: 516
  start-page: 227
  year: 2014
  end-page: 230
  ident: CR11
  article-title: Proton transport through one-atom-thick crystals
  publication-title: Nature
  doi: 10.1038/nature14015
  contributor:
    fullname: Hu
– volume: 148
  start-page: 224301
  year: 2018
  ident: CR29
  article-title: Theoretical description of quantum mechanical permeation of graphene membranes by charged hydrogen isotopes
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5027821
  contributor:
    fullname: Haut
– volume: 29
  start-page: 2088
  year: 2008
  end-page: 2097
  ident: CR43
  article-title: Application of semiempirical long-range dispersion corrections to periodic systems in density functional theory
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21069
  contributor:
    fullname: Sauer
– volume: 499
  start-page: 419
  year: 2013
  end-page: 425
  ident: CR32
  article-title: Van der Waals heterostructures
  publication-title: Nature
  doi: 10.1038/nature12385
  contributor:
    fullname: Grigorieva
– volume: 67
  start-page: 58
  year: 2014
  end-page: 63
  ident: CR4
  article-title: Graphene: an impermeable or selectively permeable membrane for atomic species?
  publication-title: Carbon
  doi: 10.1016/j.carbon.2013.09.055
  contributor:
    fullname: Pantelides
– volume: 27
  start-page: 1787
  year: 2006
  end-page: 1799
  ident: CR42
  article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20495
  contributor:
    fullname: Grimme
– volume: 8
  start-page: 6009
  year: 2017
  end-page: 6014
  ident: CR7
  article-title: Hydrogenation facilitates proton transfer through two-dimensional honeycomb crystals
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b02820
  contributor:
    fullname: Feng
– volume: 102
  start-page: 076102
  year: 2009
  ident: CR25
  article-title: Intrinsic and extrinsic corrugation of monolayer graphene deposited on SiO
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.076102
  contributor:
    fullname: Geringer
– volume: 43
  start-page: 565
  year: 2014
  end-page: 576
  ident: CR34
  article-title: Carbon nanofluidics of rapid water transport for energy applications
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60253B
  contributor:
    fullname: Jung
– volume: 13
  start-page: 5188
  year: 1976
  end-page: 5192
  ident: CR41
  article-title: Special points for Brillouin-zone integrations
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.5188
  contributor:
    fullname: Pack
– volume: 296
  start-page: 1
  year: 2019
  end-page: 7
  ident: CR49
  article-title: A charge-transfer resistance model and Arrhenius activation analysis for hydrogen ion transmission across single-layer graphene
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.11.005
  contributor:
    fullname: Creager
– volume: 351
  start-page: 68
  year: 2016
  end-page: 70
  ident: CR12
  article-title: Sieving hydrogen isotopes through two-dimensional crystals
  publication-title: Science
  doi: 10.1126/science.aac9726
  contributor:
    fullname: Lozada-Hidalgo
– ident: CR38
– volume: 7
  start-page: 10335
  year: 2013
  end-page: 10343
  ident: CR21
  article-title: Enhanced chemical reactivity of graphene induced by mechanical strain
  publication-title: ACS Nano
  doi: 10.1021/nn404746h
  contributor:
    fullname: Ago
– volume: 6
  start-page: 858
  year: 2007
  end-page: 861
  ident: CR26
  article-title: Intrinsic ripples in graphene
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2011
  contributor:
    fullname: Katsnelson
– volume: 6
  start-page: 953
  year: 2006
  end-page: 957
  ident: CR35
  article-title: Measurement of the adhesion force between carbon nanotubes and a silicon dioxide substrate
  publication-title: Nano Lett.
  doi: 10.1021/nl060018t
  contributor:
    fullname: Davis
– volume: 103
  start-page: 246804
  year: 2009
  ident: CR30
  article-title: Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.246804
  contributor:
    fullname: Starke
– volume: 5
  start-page: 482
  year: 1961
  end-page: 498
  ident: CR45
  article-title: The dissociation energies of the H , HD, and D molecules
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/0022-2852(61)90111-4
  contributor:
    fullname: Monfils
– volume: 18
  start-page: 1168
  year: 2018
  end-page: 1174
  ident: CR16
  article-title: Nanometer resolution elemental mapping in graphene-based TEM liquid cells
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b04713
  contributor:
    fullname: Kelly
– volume: 19
  start-page: 5813
  year: 2017
  end-page: 5817
  ident: CR27
  article-title: Density functional based simulations of proton permeation of graphene and hexagonal boron nitride
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP08923B
  contributor:
    fullname: Katsnelson
– volume: 3
  start-page: 025004
  year: 2016
  ident: CR6
  article-title: Proton and hydrogen transport through two-dimensional monolayers
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/3/2/025004
  contributor:
    fullname: Pandey
– volume: 23
  start-page: 1628
  year: 2013
  end-page: 1635
  ident: CR48
  article-title: Kinetic isotope effect in the hydrogenation and deuteration of graphene
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201202355
  contributor:
    fullname: Paris
– volume: 315
  start-page: 490
  year: 2007
  ident: 2070_CR13
  publication-title: Science
  doi: 10.1126/science.1136836
  contributor:
    fullname: JS Bunch
– volume: 437
  start-page: 298
  year: 2013
  ident: 2070_CR19
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2013.02.047
  contributor:
    fullname: ND Deveau
– volume: 13
  start-page: 5188
  year: 1976
  ident: 2070_CR41
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.5188
  contributor:
    fullname: HJ Monkhorst
– volume: 23
  start-page: 1628
  year: 2013
  ident: 2070_CR48
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201202355
  contributor:
    fullname: A Paris
– volume: 93
  start-page: 193107
  year: 2008
  ident: 2070_CR3
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3021413
  contributor:
    fullname: O Leenaerts
– volume: 538
  start-page: 222
  year: 2016
  ident: 2070_CR14
  publication-title: Nature
  doi: 10.1038/nature19363
  contributor:
    fullname: B Radha
– volume: 27
  start-page: 1787
  year: 2006
  ident: 2070_CR42
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20495
  contributor:
    fullname: S Grimme
– volume: 43
  start-page: 565
  year: 2014
  ident: 2070_CR34
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60253B
  contributor:
    fullname: HG Park
– volume: 516
  start-page: 227
  year: 2014
  ident: 2070_CR11
  publication-title: Nature
  doi: 10.1038/nature14015
  contributor:
    fullname: S Hu
– volume: 5
  start-page: 482
  year: 1961
  ident: 2070_CR45
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/0022-2852(61)90111-4
  contributor:
    fullname: G Herzberg
– volume: 6
  start-page: 953
  year: 2006
  ident: 2070_CR35
  publication-title: Nano Lett.
  doi: 10.1021/nl060018t
  contributor:
    fullname: JD Whittaker
– volume: 77
  start-page: 3865
  year: 1996
  ident: 2070_CR40
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
  contributor:
    fullname: JP Perdew
– volume: 11
  start-page: 764
  year: 2012
  ident: 2070_CR15
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3386
  contributor:
    fullname: SJ Haigh
– volume: 12
  start-page: 125012
  year: 2010
  ident: 2070_CR8
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/12/12/125012
  contributor:
    fullname: WL Wang
– volume: 6
  start-page: 543
  year: 2011
  ident: 2070_CR18
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.123
  contributor:
    fullname: SP Koenig
– volume: 62
  start-page: 1
  year: 2013
  ident: 2070_CR2
  publication-title: Carbon
  doi: 10.1016/j.carbon.2013.05.052
  contributor:
    fullname: V Berry
– volume: 148
  start-page: 224301
  year: 2018
  ident: 2070_CR29
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5027821
  contributor:
    fullname: JW Mazzuca
– volume: 499
  start-page: 419
  year: 2013
  ident: 2070_CR32
  publication-title: Nature
  doi: 10.1038/nature12385
  contributor:
    fullname: AK Geim
– volume: 148
  start-page: 204707
  year: 2018
  ident: 2070_CR28
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5024317
  contributor:
    fullname: I Poltavsky
– volume: 81
  start-page: 075425
  year: 2010
  ident: 2070_CR23
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.81.075425
  contributor:
    fullname: H McKay
– volume: 103
  start-page: 246804
  year: 2009
  ident: 2070_CR30
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.246804
  contributor:
    fullname: C Riedl
– volume: 342
  start-page: 614
  year: 2013
  ident: 2070_CR33
  publication-title: Science
  doi: 10.1126/science.1244358
  contributor:
    fullname: L Wang
– volume: 63
  start-page: 311
  year: 1915
  ident: 2070_CR36
  publication-title: Z. Math. Phys.
  contributor:
    fullname: H Hencky
– volume: 117
  start-page: 1
  year: 1995
  ident: 2070_CR46
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1995.1039
  contributor:
    fullname: S Plimpton
– volume: 8
  start-page: 2458
  year: 2008
  ident: 2070_CR1
  publication-title: Nano Lett.
  doi: 10.1021/nl801457b
  contributor:
    fullname: JS Bunch
– volume: 29
  start-page: 2088
  year: 2008
  ident: 2070_CR43
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21069
  contributor:
    fullname: T Kerber
– volume: 102
  start-page: 076102
  year: 2009
  ident: 2070_CR25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.076102
  contributor:
    fullname: V Geringer
– volume: 3
  start-page: 025004
  year: 2016
  ident: 2070_CR6
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/3/2/025004
  contributor:
    fullname: M Seel
– volume: 7
  start-page: 10335
  year: 2013
  ident: 2070_CR21
  publication-title: ACS Nano
  doi: 10.1021/nn404746h
  contributor:
    fullname: MA Bissett
– volume: 7
  start-page: 728
  year: 2012
  ident: 2070_CR9
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.162
  contributor:
    fullname: SP Koenig
– volume: 54
  start-page: 11169
  year: 1996
  ident: 2070_CR39
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
  contributor:
    fullname: G Kresse
– volume: 351
  start-page: 68
  year: 2016
  ident: 2070_CR12
  publication-title: Science
  doi: 10.1126/science.aac9726
  contributor:
    fullname: M Lozada-Hidalgo
– volume: 136
  start-page: 074103
  year: 2012
  ident: 2070_CR44
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3684549
  contributor:
    fullname: D Sheppard
– volume: 49
  start-page: 677
  year: 2013
  ident: 2070_CR20
  publication-title: Chem. Commun.
  doi: 10.1039/C2CC36747E
  contributor:
    fullname: Q Wu
– volume: 67
  start-page: 58
  year: 2014
  ident: 2070_CR4
  publication-title: Carbon
  doi: 10.1016/j.carbon.2013.09.055
  contributor:
    fullname: L Tsetseris
– volume: 15
  start-page: 16132
  year: 2013
  ident: 2070_CR5
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp52318g
  contributor:
    fullname: M Miao
– volume: 8
  start-page: 6009
  year: 2017
  ident: 2070_CR7
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b02820
  contributor:
    fullname: Y Feng
– volume: 13
  start-page: 468
  year: 2018
  ident: 2070_CR17
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0088-0
  contributor:
    fullname: S Hu
– volume: 113
  start-page: 14176
  year: 2009
  ident: 2070_CR22
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp905702e
  contributor:
    fullname: DW Boukhvalov
– ident: 2070_CR38
– volume: 18
  start-page: 1168
  year: 2018
  ident: 2070_CR16
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b04713
  contributor:
    fullname: DJ Kelly
– volume: 19
  start-page: 5813
  year: 2017
  ident: 2070_CR27
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP08923B
  contributor:
    fullname: JMH Kroes
– volume: 143
  start-page: 101
  year: 2007
  ident: 2070_CR24
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2007.02.047
  contributor:
    fullname: JC Meyer
– volume: 10
  start-page: 785
  year: 2015
  ident: 2070_CR10
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.158
  contributor:
    fullname: L Wang
– volume: 97
  start-page: 186102
  year: 2006
  ident: 2070_CR47
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.186102
  contributor:
    fullname: L Hornekær
– volume: 119
  start-page: 036101
  year: 2017
  ident: 2070_CR37
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.036101
  contributor:
    fullname: G Wang
– volume: 6
  start-page: 858
  year: 2007
  ident: 2070_CR26
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2011
  contributor:
    fullname: A Fasolino
– volume: 8
  start-page: 045015
  year: 2018
  ident: 2070_CR31
  publication-title: AIP Adv.
  doi: 10.1063/1.5024132
  contributor:
    fullname: J Kunc
– volume: 296
  start-page: 1
  year: 2019
  ident: 2070_CR49
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.11.005
  contributor:
    fullname: S Bukola
SSID ssj0005174
Score 2.7151148
Snippet Despite being only one-atom thick, defect-free graphene is considered to be completely impermeable to all gases and liquids 1 – 10 . This conclusion is based...
Despite being only one-atom thick, defect-free graphene is considered to be completely impermeable to all gases and liquids . This conclusion is based on...
Despite being only one-atom thick, defect-free graphene is considered to be completely impermeable to all gases and liquids.sup.1-10. This conclusion is based...
Despite being only one-atom thick, defect-free graphene is considered to be completely impermeable to all gases and liquids1-10. This conclusion is based on...
SourceID proquest
gale
crossref
pubmed
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 229
SubjectTerms 142/126
639/925/357
639/925/918
Accuracy
Adatoms
Analysis
Argon
Containers
Control
Defects
Deflation
Dissociation
Energy
Experiments
Gas flow
Gas permeation
Gases
Graphene
Helium
Helium atoms
Humanities and Social Sciences
Hydrogen
Hydrogen storage
Krypton
Membranes
multidisciplinary
Neon
Oxygen
Penetration
Permeability
Properties
Science
Science (multidisciplinary)
Silicon wafers
Testing
Thermal cycling
Two dimensional materials
Xenon
Title Limits on gas impermeability of graphene
URI https://link.springer.com/article/10.1038/s41586-020-2070-x
https://www.ncbi.nlm.nih.gov/pubmed/32161387
https://www.proquest.com/docview/2382073924
https://search.proquest.com/docview/2376733981
Volume 579
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-xTUi8oG18ZRtVQBMMULTGTh3nCbXVykCiQmMTfbNsx672QNI1rTT-e86JuzXV4CV5uEtk_XznO_vOdwDHuI3uGqK7EdG4RUmsthEnRkWUMZXa3HZ14m4jfx-z86vk26Q38QdulU-rXK2J9UKdl9qdkZ-iaSEuqkSSz7ObyHWNctFV30JjC3ZiFEzXuoEP11I8Nqowr6KalJ9WaLi4S7_FUaLUR7ctu7S5Oq-Zp414aW2GRrvw1PuPYb-Z8D14ZIp9eFzncepqH_a8rlbhiS8o_eEZnNS3mKqwLMKprMJr9JTnv01ToPtPWNqwrlqN7M_hanR2OTyPfIeESLM4XkRU5cQSkluZscxIKVE9U6ayXOWUGJpkUipCjVUUvSRmGZEJ60ljGEsY0bGhL2C7KAvzCsLUZIhuHlulcIeUSE5klxsXN-1ZQ3IVwMcVPmLWFMIQdQCbctGAKRBM4cAUtwEcOwSFKzBRuAyWqVxWlehf_hqORZ-5TWfGUxrA24fYvv68aDG990y2XMyllv7eAA7bla5qcR62OPXs-kasUd-1qNNmFh76zVGLEfVNt8krsRBe3ytxL50BvLkjuy9dDlthyqXjSVlKacbjAF424nSHJCXoeVOeBvBpJV_3P_8nzAf_H8ohPCFOwOuMuSPYXsyX5jW6UAvVga10knZqbXHP0ZcO7PRHg8EY34Oz8Y-Lv4c9F3s
link.rule.ids 315,786,790,12083,12250,12792,21416,27955,27956,31752,31753,33299,33300,33406,33407,33777,33778,43343,43612,43633,43838,74100,74369,74390,74657
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED-xomm8TIN9kPGxbEIb2xTR2KnjPKEOgcoG1cSK4M2yHbviYUmpW4n997MTh5KK7dkXy_rlznfnO_8MsGfT6K5CshshaVOUREsdUaREhAkRqc51VybuNvL5kAwuk-_XvWt_4GZ8W2WzJ1YbdV5Kd0Z-YF0LclUllBxObiP3apSrrvonNJ7AqqPcpB1Y_XY8_HmxaPJY4mFu6pqYHhjruqhrwLXrtHof3bU80_L-_MBBLVVMK0d08gKe-wgy7Ne_fB1WVLEBT6tOTmk2YN1bqwn3PaX055ewX91jMmFZhGNuwhsbK09_q5qi-09Y6rDirbbir-Dy5Hh0NIj8GwmRJHE8i7DIkUYo1zwjmeKcWwNNichykWOkcJJxLhBWWmAbJxFNEE9IjytFSEKQjBV-DZ2iLNQmhKnKLL55rIWwOVLCKeJdqlzltKcVykUAXxp82KSmwmBVCRtTVoPJLJjMgcnuAthzCDJHMVG4HpYxnxvD-qOroyHrE5d2ZjTFAXx4TOz010VL6JMX0uVsyiX3Nwfssh15VUtyqyUpJze37MHox9bouP4Lj02z3RK0Fifbw41aMG_xhi30M4D398PuS9fFVqhy7mRSkmKc0TiAN7U63SOJkY29MU0D-Nro12Lyf8L89v9LeQfPBqPzM3Z2OvyxBWvIKXvVP7cNndl0rnZsQDUTu95q_gKCKBcs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_BEIgXxMZX2BgBTTBAURs7dZynqSpUGx8Vgk3szbIdu9oDSde00vbf75w4W1MNnv2LZZ3vfHe5n88Ae5hG9w3R_YhoTFESq23EiVERZUylNrd9nbjbyD8m7PAk-Xo6OPX8p8rTKtszsT6o81K7f-Q9dC3EVZVI0rOeFvHz8_hgdh65F6RcpdU_p3EX7qFXZE7D-WiF7rHWkbmtcFLeq9CJcUfFxRWjBUQXHR-1flKvuKq12mntksaP4ZGPJcNhs_mbcMcUW3C_5nTqags2vd1W4b5vLv3hCezXN5qqsCzCqazCM4ya539N06z7MixtWHewRvhTOBl_OR4dRv61hEizOF5EVOXEEpJbmbHMSCnRVFOmslzllBiaZFIqQo1VFCMmZhmRCRtIYxhLGNGxoc9goygL8wLC1GQo6Ty2SmG2lEhOZJ8bV0MdWENyFcDHVj5i1jTFEHUxm3LRCFOgMIUTprgIYM9JULhmE4XbtqlcVpUYHv8ZTcSQuQQ04ykN4O1tsKPfvzqg9x5ky8VcaunvEOCyXRurDnK7g9Szs3OxMvquMzptduG2aXY6QLQ93R1u1UJ426_EjaYG8OZ62H3p-GyFKZcOk7KU0ozHATxv1OlakpRgFE55GsCnVr9uJv-nmF_-fymv4QGai_h-NPm2DQ-J0_WaSLcDG4v50rzCyGqhdmuTuQL5FhnG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Limits+on+gas+impermeability+of+graphene&rft.jtitle=Nature+%28London%29&rft.au=Sun%2C+P.+Z&rft.au=Yang%2C+Q&rft.au=Kuang%2C+W.+J&rft.au=Stebunov%2C+Y.+V&rft.date=2020-03-01&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=579&rft.issue=7798&rft.spage=229&rft_id=info:doi/10.1038%2Fs41586-020-2070-x&rft.externalDBID=ISR&rft.externalDocID=A621109873
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon