CiApex1 has AP endonuclease activity and abrogated AP site repair disrupts early embryonic development in Ciona intestinalis

Apurinic/apyrimidinic (AP) sites are the most common form of cytotoxic DNA damage. Since AP sites inhibit DNA replication and transcription, repairing them is critical for cell growth. However, the significance of repairing AP sites during early embryonic development has not yet been clearly determi...

Full description

Saved in:
Bibliographic Details
Published inGenes & Genetic Systems Vol. 94; no. 2; pp. 81 - 93
Main Authors Igarashi, Kento, Funakoshi, Masafumi, Kato, Seiji, Moriwaki, Takahito, Kato, Yuichi, Zhang-Akiyama, Qiu-Mei
Format Journal Article
LanguageEnglish
Published Japan The Genetics Society of Japan 01.04.2019
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Apurinic/apyrimidinic (AP) sites are the most common form of cytotoxic DNA damage. Since AP sites inhibit DNA replication and transcription, repairing them is critical for cell growth. However, the significance of repairing AP sites during early embryonic development has not yet been clearly determined. Here, we focused on APEX1 from the ascidian Ciona intestinalis (CiApex1), a homolog of human AP endonuclease 1 (APEX1), and examined its role in early embryonic development. Recombinant CiApex1 protein complemented the drug sensitivities of an AP endonuclease-deficient Escherichia coli mutant, and exhibited Mg2+-dependent AP endonuclease activity, like human APEX1, in vitro. Next, the effects of abnormal AP site repair on embryonic development were investigated. Treatment with methyl methanesulfonate, which alkylates DNA bases and generates AP sites, induced abnormal embryonic development. This abnormal phenotype was also caused by treatment with methoxyamine, which inhibits AP endonuclease activity. Furthermore, we constructed dominant-negative CiApex1, which inhibits CiApex1 action, and found that its expression impaired embryonic growth. These results suggested that AP site repair is essential for embryonic development and CiApex1 plays an important role in AP site repair during early embryonic development in C. intestinalis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1341-7568
1880-5779
DOI:10.1266/ggs.18-00043