LTL概率模型检验工具的实现与优化

概率模型检验建立在非概率模型检验技术的基础上,不仅能够对系统进行定性的验证,还能够定量判断系统满足相关性质的概率,具有广泛的适用性。LTL概率模型检验算法的复杂度较高,达到双重指数级别,现有的工具如PRISM与MRMC均不支持对LTL性质的验证。针对这个问题,通过对原有的LTL概率模型检验算法进行优化,实现了一个高效的LTL概率模型检验工具。通过对比实验验证了该工具的有效性。...

Full description

Saved in:
Bibliographic Details
Published in计算机工程与科学 Vol. 39; no. 5; pp. 892 - 896
Main Author 林哲超 董威
Format Journal Article
LanguageChinese
Published 国防科学技术大学计算机学院,湖南长沙,410073 2017
Subjects
Online AccessGet full text
ISSN1007-130X
DOI10.3969/j.issn.1007-130X.2017.05.011

Cover

Loading…
More Information
Summary:概率模型检验建立在非概率模型检验技术的基础上,不仅能够对系统进行定性的验证,还能够定量判断系统满足相关性质的概率,具有广泛的适用性。LTL概率模型检验算法的复杂度较高,达到双重指数级别,现有的工具如PRISM与MRMC均不支持对LTL性质的验证。针对这个问题,通过对原有的LTL概率模型检验算法进行优化,实现了一个高效的LTL概率模型检验工具。通过对比实验验证了该工具的有效性。
Bibliography:LIN Zhe-chao,DONG Wei (College of Computer, National University of Defense Technology, Changsha 410073, China)
Probabilistic model checking is one model checking technology, which cannot only verify the system qualitatively but also judge if the system satisfies quantitative properties. The complexity for LTL probabilistic model checking can be up to a double exponential level. Existing tools such as PRISM and MRMC do not support the validation of LTL properties. We optimize the LTL probabilistic model checking algorithm and implement an efficient LTL model checker. The proposed tool is evaluated via some comparative experiments.
43-1258/TP
LTL; probabilistic model checking; optimization
ISSN:1007-130X
DOI:10.3969/j.issn.1007-130X.2017.05.011