Effects of neonatal flutamide treatment on hippocampal neurogenesis and synaptogenesis correlate with depression-like behaviors in preadolescent male rats

The prevalence of major depressive disorder (MDD) in adult men is roughly half that of women. Clinical evidence supports a protective effect of androgens against depressive disorders in men. The developing brain is subject to androgen exposure but a potential role for this in depression during adult...

Full description

Saved in:
Bibliographic Details
Published inNeuroscience Vol. 169; no. 1; pp. 544 - 554
Main Authors Zhang, J.M., Tonelli, L., Regenold, W.T., McCarthy, M.M.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 11.08.2010
Elsevier
Subjects
DG
EPM
E
PND
MDD
FLU
DHT
CA1
SPT
Tfm
OFT
PBS
DAB
FST
ER
AR
NOT
LD
Rat
Online AccessGet full text

Cover

Loading…
More Information
Summary:The prevalence of major depressive disorder (MDD) in adult men is roughly half that of women. Clinical evidence supports a protective effect of androgens against depressive disorders in men. The developing brain is subject to androgen exposure but a potential role for this in depression during adulthood has not been considered. In order to explore this question we treated newborn male rat pups with the androgen receptor antagonist flutamide to block endogenous androgen action and then conducted behavioral tests prior to puberty. Depression-like behaviors were assessed with the Forced Swim Test (FST) and the Sucrose Preference Test (SPT), and anxiety-like behaviors were assessed with the Open Field Test (OFT) and the Novelty-Suppressed Feeding Test (NSFT). Compared to the vehicle-treated controls, neonatal-flutamide treatment caused a significant increase in depression-like behaviors in preadolescent male rats but did not cause any significant difference in anxiety-like behaviors. In separate experiments, male pups with and without flutamide treatment were injected with 5-bromo-2′-deoxyuridine-5′-monophosphate (BrdU) from postnatal day (PND) 1 to 4 to label newly produced cells or the hippocampi were Golgi-Cox imbedded and pyramidal neurons visualized. Three lines of evidence indicate neonatal flutamide treatment inhibits hippocampal neurogenesis and neuronal dendritic spine formation in preadolescent male rats. Compared to vehicle controls, flutamide treatment significantly decreased (1) the number of microtubal associated protein-2+ (MAP-2) neurons in the CA1 region, (2) the number of MAP-2+ neurons in the dentate gyrus (DG) region of the hippocampus, and (3) the density of dendritic spines of pyramidal neurons in the CA1 region. However, there was no effect of flutamide treatment on the number of glial fibrillary acidic protein (GFAP)+ or GFAP+/BrdU+ cells in the hippocampus. This study suggests that the organizational effect of androgen-induced hippocampal neurogenesis is antidepressant.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0306-4522
1873-7544
1873-7544
DOI:10.1016/j.neuroscience.2010.03.029