Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery

The CRISPR/Cas9 system is a robust genome editing technology that works in human cells, animals and plants based on the RNA-programmed DNA cleaving activity of the Cas9 enzyme. Building on previous work (Jinek et al., 2013), we show here that new genetic information can be introduced site-specifical...

Full description

Saved in:
Bibliographic Details
Published ineLife Vol. 3; p. e04766
Main Authors Lin, Steven, Staahl, Brett T, Alla, Ravi K, Doudna, Jennifer A
Format Journal Article
LanguageEnglish
Published England eLife Sciences Publications Ltd 15.12.2014
eLife Sciences Publications, Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The CRISPR/Cas9 system is a robust genome editing technology that works in human cells, animals and plants based on the RNA-programmed DNA cleaving activity of the Cas9 enzyme. Building on previous work (Jinek et al., 2013), we show here that new genetic information can be introduced site-specifically and with high efficiency by homology-directed repair (HDR) of Cas9-induced site-specific double-strand DNA breaks using timed delivery of Cas9-guide RNA ribonucleoprotein (RNP) complexes. Cas9 RNP-mediated HDR in HEK293T, human primary neonatal fibroblast and human embryonic stem cells was increased dramatically relative to experiments in unsynchronized cells, with rates of HDR up to 38% observed in HEK293T cells. Sequencing of on- and potential off-target sites showed that editing occurred with high fidelity, while cell mortality was minimized. This approach provides a simple and highly effective strategy for enhancing site-specific genome engineering in both transformed and primary human cells.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
AC02-05CH11231
USDOE Office of Science (SC), Biological and Environmental Research (BER). Biological Systems Science Division
These authors contributed equally to this work.
ISSN:2050-084X
2050-084X
DOI:10.7554/elife.04766