The Stress-Induced Cytokine Interleukin-6 Decreases the Inhibition/Excitation Ratio in the Rat Temporal Cortex via Trans-Signaling

Although it is known that stress elevates the levels of pro-inflammatory cytokines and promotes hyper-excitable central conditions, a causal relationship between these two factors has not yet been identified. Recent studies suggest that increases in interleukin 6 (IL-6) levels are specifically assoc...

Full description

Saved in:
Bibliographic Details
Published inBiological psychiatry (1969) Vol. 71; no. 7; pp. 574 - 582
Main Authors Garcia-Oscos, Francisco, Salgado, Humberto, Hall, Shawn, Thomas, Feba, Farmer, George E., Bermeo, Jorge, Galindo, Luis Charles, Ramirez, Ruben D., D'Mello, Santosh, Rose-John, Stefan, Atzori, Marco
Format Journal Article
LanguageEnglish
Published New York, NY Elsevier Inc 01.04.2012
Elsevier
Subjects
rat
rat
Rat
Online AccessGet full text

Cover

Loading…
More Information
Summary:Although it is known that stress elevates the levels of pro-inflammatory cytokines and promotes hyper-excitable central conditions, a causal relationship between these two factors has not yet been identified. Recent studies suggest that increases in interleukin 6 (IL-6) levels are specifically associated with stress. We hypothesized that IL-6 acutely and directly induces cortical hyper-excitability by altering the balance between synaptic excitation and inhibition. We used patch-clamp to determine the effects of exogenous or endogenous IL-6 on electrically evoked postsynaptic currents on a cortical rat slice preparation. We used control subjects or animals systemically injected with lipopolysaccharide or subjected to electrical foot-shock as rat models of stress. In control animals, IL-6 did not affect excitatory postsynaptic currents but selectively and reversibly reduced the amplitude of inhibitory postsynaptic currents with a postsynaptic effect. The IL-6-induced inhibitory postsynaptic currents decrease was inhibited by drugs interfering with receptor trafficking and/or internalization, including wortmannin, Brefeldin A, 2-Br-hexadecanoic acid, or dynamin peptide inhibitor. In both animal models, stress-induced decrease in synaptic inhibition/excitation ratio was prevented by prior intra-ventricular injection of an analog of the endogenous IL-6 trans-signaling blocker gp130. Our results suggest that stress-induced IL-6 shifts the balance between synaptic inhibition and excitation in favor of the latter, possibly by decreasing the density of functional γ-aminobutyric acid A receptors, accelerating their removal and/or decreasing their insertion rate from/to the plasma membrane. We speculate that this mechanism could contribute to stress-induced detrimental long-term increases in central excitability present in a variety of neurological and psychiatric conditions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0006-3223
1873-2402
1873-2402
DOI:10.1016/j.biopsych.2011.11.018