The grain quality of wheat wild relatives in the evolutionary context

Key message We evaluated the potential of wheat wild relatives for the improvement in grain quality characteristics including micronutrients (Fe, Zn) and gluten and identified diploid wheats and the timopheevii lineage as the most promising resources. Domestication enabled the advancement of civiliz...

Full description

Saved in:
Bibliographic Details
Published inTheoretical and applied genetics Vol. 135; no. 11; pp. 4029 - 4048
Main Authors Zeibig, Frederike, Kilian, Benjamin, Frei, Michael
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2022
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Key message We evaluated the potential of wheat wild relatives for the improvement in grain quality characteristics including micronutrients (Fe, Zn) and gluten and identified diploid wheats and the timopheevii lineage as the most promising resources. Domestication enabled the advancement of civilization through modification of plants according to human requirements. Continuous selection and cultivation of domesticated plants induced genetic bottlenecks. However, ancient diversity has been conserved in crop wild relatives. Wheat ( Triticum aestivum L.; Triticum durum Desf.) is one of the most important staple foods and was among the first domesticated crop species. Its evolutionary diversity includes diploid, tetraploid and hexaploid species from the Triticum and Aegilops taxa and different genomes, generating an AA, BBAA/GGAA and BBAADD/GGAAA m A m genepool, respectively. Breeding and improvement in wheat altered its grain quality. In this review, we identified evolutionary patterns and the potential of wheat wild relatives for quality improvement regarding the micronutrients Iron (Fe) and Zinc (Zn), the gluten storage proteins α-gliadins and high molecular weight glutenin subunits (HMW-GS), and the secondary metabolite phenolics. Generally, the timopheevii lineage has been neglected to date regarding grain quality studies. Thus, the timopheevii lineage should be subject to grain quality research to explore the full diversity of the wheat gene pool.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ISSN:0040-5752
1432-2242
1432-2242
DOI:10.1007/s00122-021-04013-8