Effect of Microstructure of Base Steel on Fe-Zn Alloy Growth during Galvanizing of an Interstitial Free Steel

The effect of the microstructure of the base steel on the formation and growth behavior of intermetallics on interstitial free steel during galvanizing under various processing conditions (substrate entry temperature, Al content in galvanizing bath) was investigated from the viewpoint of the surface...

Full description

Saved in:
Bibliographic Details
Published inISIJ International Vol. 36; no. 2; pp. 179 - 186
Main Authors Nakamori, Toshio, Adachi, Yoshitaka, Toki, Tamotsu, Shibuya, Atsuyoshi
Format Journal Article
LanguageEnglish
Published Tokyo The Iron and Steel Institute of Japan 01.01.1996
Iron and Steel Institute of Japan
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The effect of the microstructure of the base steel on the formation and growth behavior of intermetallics on interstitial free steel during galvanizing under various processing conditions (substrate entry temperature, Al content in galvanizing bath) was investigated from the viewpoint of the surface morphology of the intermetallics. In addition, the surface morphology of galvannealed coating was also examined. The dependency of Fe-Zn intermetallics growth behavior on the crystal orientation of the base steel was observed clearly in galvanizing in 0.10 mass% or less Al bath, especially at low entry temperatures. In general, ζ crystals are precipitated orderly on (111)α, whereas those are precipitated disorderly on (001)α and (101)α at the outset of the formation of Fe-Zn intermetallics, and the growth rate of Fe-Zn intermetallics on (001)α and (101)α is larger than that on (111)α. As an exception, the formation of Fe-Zn intermetallics on (001)α and (101)α at the outset of Fe-Zn interaction is suppressed at the entry temperature of 673K in 0.10 mass%. Al bath, although the clump of orderly precipitated ζ is formed on (111)α. The growth of Fe-Zn intermetallics during galvannealing also depends on crystallographic orientation of the αFe grain of the base steel, being retarded on (111)α. A large αFe grain with (111)α on the surface is thought to cause a concave portion on the galvannealed surface. Consequently, it is thought that the formation and growth behavior of Fe-Zn intermetallics on IF steel is affected not only by the αFe grain boundary but also by the crystallographic orientation of the αFe grain of the base steel.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0915-1559
1347-5460
DOI:10.2355/isijinternational.36.179